a2 United States Patent

Angelov et al.

US009448648B2

US 9,448,648 B2
Sep. 20, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

METHOD AND SYSTEM FOR INK DATA
GENERATION, INK DATA RENDERING, INK
DATA MANIPULATION AND INK DATA
COMMUNICATION

Applicant: Wacom Co., Ltd., Saitama (JP)

Inventors: Branimir Angelov, Sofia (BG); Plamen
Petkov, Sofia (BG)

Assignee: Wacom Co., Ltd., Saitama (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/838,182

Filed: Aug. 27, 2015

Prior Publication Data

US 2015/0371417 Al Dec. 24, 2015

Related U.S. Application Data

Continuation of application
PCT/IP2014/005830, filed on Nov. 19, 2014.

Provisional application No. 61/906,334, filed on Nov.
19, 2013, provisional application No. 61/908,647,
filed on Nov. 25, 2013, provisional application No.
61/973,161, filed on Mar. 31, 2014, provisional
application No. 62/042,747, filed on Aug. 27, 2014.

No.

Int. CL.
GO6F 3/038 (2013.01)
G06Q 10/10 (2012.01)
(Continued)
U.S. CL
CPC ... GO6F 3/038 (2013.01); GOGF 3/03545

(2013.01); GO6F 3/0412 (2013.01);
(Continued)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,425,109 A * 6/1995 Sagacceceenn. GOGF 3/04845
345/441
6,111,588 A 8/2000 Newell
(Continued)
FOREIGN PATENT DOCUMENTS
Jp 6-96178 A 4/1994
Jp 6-162159 A 6/1994
(Continued)

OTHER PUBLICATIONS

Hinckley “Pen + Touch = New Tools”, UIST’10, Oct. 3-6, 2010,
New York, New York, USA. Copyright 2010 ACM 978-1-4503-
0271-5/10/10 $10.00; pp. 1 and 5-7.*

(Continued)

Primary Examiner — Maurice L McDowell, Jr.
(74) Attorney, Agent, or Firm — Seed Intellectual Property
Law Group PLLC

(57) ABSTRACT

Methods and systems are provided for generating, rendering,
manipulating (e.g., slicing), and communicating stroke
objects that form ink data. In a method of generating a stroke
object, pen event data indicative of pen down, pen move-
ment, and pen up events are sequentially received to gen-
erate point objects that collectively form a stroke object. The
point objects serve as control points for interpolating curve
segments. Further, a start parameter indicative of a start
point within a starting curve segment of the curve segments
at which display of the stroke object starts, and an end
parameter indicative of an end point within an ending curve
segment of at which display of the stroke object ends, are
generated for the stroke object. When rendering the stroke
object, a system limits display of the stroke object to a range
bound by the start and end parameters, as opposed to
displaying the entire stroke object.

12 Claims, 123 Drawing Sheets

3901]

Lo fmt 561 300

b

360

139

,,,,,,,

113

INPUTZod b THRUTS
A TR
¢ THPT 1 Ik oy
118 i Data
]

US 9,448,648 B2
Page 2

(51) Int. CL
GOGF 3/0488 (2013.01)
GOGF 3/0354 (2013.01)
GOGK 9/52 (2006.01)
GO6T 11/20 (2006.01)
GOGF 3/041 (2006.01)
GOGK 9/22 (2006.01)
(52) US.CL
CPC GOG6F3/0414 (2013.01); GOGF 3/04883

(2013.01); GO6K 9/222 (2013.01); GO6K 9/52
(2013.01); GO6Q 10/101 (2013.01); GO6T
11/203 (2013.01); GO6F 2203/0383 (2013.01);
GOGF 2203/04105 (2013.01); GO6F
2203/04106 (2013.01)

(56) References Cited
U.S. PATENT DOCUMENTS

7,057,615 B2 6/2006 Wang et al.
7,450,125 B2 11/2008 Wang et al.
7,542,603 B2 6/2009 Rosel
8,102,397 B2 1/2012 Perry et al.
2003/0025713 Al* 2/2003 Wangc..... GO6T 11/203
345/611
2004/0233197 Al* 11/2004 Liu .oooovveierenrnene. GO6T 11/203
345/442

2005/0175238 Al
2006/0290698 Al
2007/0176893 Al*

8/2005 Rosel

12/2006 Wang et al.

8/2007 Satoccociene. HO04L 67/38
345/156

2010/0017758 Al

2010/0188408 Al

2011/0025693 Al*

1/2010 Zotov et al.

7/2010 Perry et al.

2/2011 Merry ..o GO6T 11/203
345/442

2012/0092277 Al 4/2012 Momchilov

2013/0257769 Al
2013/0257792 Al
2014/0043547 Al
2014/0247276 Al*

10/2013 Sheik-Nainar
10/2013 Trent et al.
2/2014 Marhefka
9/2014 Pedreira GO6T 11/203
345/610

FOREIGN PATENT DOCUMENTS

JP 10-293859 A 11/1998
JP 2003-141100 A 5/2003
JP 2005-222554 A 8/2005
JP 2010-170097 A 8/2010
JP 2012-190303 A 10/2012

OTHER PUBLICATIONS

W3C, Recommendation 20, Sep. 2011, “Ink Markup Language
(InkML)” (URL—http://www.w3.0org/TR/2011/REC-InkML-
20110920/).

Microsoft Corporation, et al., “Ink Serialized Format Specification”
2007 (URL—Mhttp://download.microsoft.com/download/0/B/E/
O0BE8BDD7-E5E8-422A-ABFD-4342ED7ADS886/
InkSerializedFormat(ISF)Specification.pdf).

W3C Working Draft, Feb. 11, 2014, “Scalable Vector Graphics
(SVGQG) 2” (URL—http://www.w3.0org/TR/SVG2/); W3C Recom-
mendation, Aug. 16, 2011, “Scalable Vector Graphics (SVG) 1.1
(Second Edition)” (URL—ttp://www.w3.0rg/TR/2011/REC-
SVG11-201110816/).

W3C, “HTMLS A vocabulary and associated APIs for HTML and
XHTML W3C Recommendation Oct. 28, 2014” (URL—http://
www.w3.org/TR/html5/).

Slate Corporation, et al., “JOT—A Specification for an Ink Storage
and Interchange Format”, Version 1.0, Sep. 1996.

International Search Report, mailed Feb. 10, 2015, issued in cor-
responding International Application No. PCT/JP2014/005830,
filed Nov. 19, 2014, 2 pages.

* cited by examiner

US 9,448,648 B2

Sheet 1 of 123

Sep. 20, 2016

U.S. Patent

<
L

sewrs Hrds Amore
I [
o e,

el N ni
~ e,
e gt oo onma
Va % .
/ ; ~ b
% N
$oper o
Yoer. *,
P %
o~ ’
g %
wsx st prre noore sews roves conns oo ovves ciss, sssne suses sorn. wrod %
: S ; ;
oottt e, j
W \\o\\ \l)-u(-n)-).
: . p \
; £
m h ‘
; £
4
P “
. z
\.\ o] ;
!
I
1 U it

% o,
f.& o M,
£ =
“,
%

o,
.,

THEAIBG T
UHE DGy 00

(LA L HOSURS)
LeLef3] BB

e

S s ssmorrr F O

US 9,448,648 B2

Sheet 2 of 123

Sep. 20, 2016

U.S. Patent

P v e oten wens cteve vt v vore oo

8L P LTS U S , ;
., o ag g sag pon -,
T A AR ; ;fo\xx\ ’
§ . o
e) -
o (aesd aselng worieyndiuey f 1.7
e g \

“,

H
:
ooy

\\ 2,.\3.;)...
S S 57 4 G paty UQM\N\\ME::E:
; .

™

WA AN RS AR MR WA s

R IEE SPrr PEre s eres pese. pere seee. Rt peen e Sere

orre rrer eerr sere. pervree

g,

e.n(t ey

o by b,

< p e,
2y ET

{385 108L00 #1435

CiTae) Bl

.

¢
H
7
i
H
%
H
’
1
H
G
$
H
¥
H
H
’
1
¢

: 1

4 -,

’ S R N R T LY

é\{}. " \,& myar.?ww\ \Vl...a....t.......
4 e,
.,
e, o

4 ..,

» >

4 e P

¢ 4

Coste wmiw svwds dids Gewss ewde wews itk wwse wwie siivs wews <8P

U.S. Patent Sep. 20, 2016 Sheet 3 of 123 US 9,448,648 B2

Fig. 3C

U.S. Patent Sep. 20, 2016 Sheet 4 of 123 US 9,448,648 B2

Stroks 1

NS roke A

%

Not retated

by 445

Stroke

403 \
Stroke | ’
Type=Slcer
g4, Eraser

48

glice 12

US 9,448,648 B2

Sheet 5 of 123

Sep. 20, 2016

U.S. Patent

vy "
;
;
;
;
;

|

2320

3

YL lbge

e

b2

e

Y

AT

e § L VL

US 9,448,648 B2

Sheet 6 of 123

Sep. 20, 2016

U.S. Patent

L7 T —

JEE e e

M { s 3 3
“.m 20
H 3ot 37
R L A
3 " i
3 A% H CO
v 330 H 4
w @(e w. ¥% k2 by
kA H LI IIIPIIIIIIIII TSI PO PP PP IS S

Buigaiet el

B YV

41 il £l

ROW

% §§§.§i§.§i,\.;a
] by \,v :
i , j Lo S, ;
; Py R~ sfi,\N 1 ;
ww } § ae w eV Re w 3 40 m m

L S

{

%
WAL BUIDICOS

U.S. Patent Sep. 20, 2016 Sheet 7 of 123 US 9,448,648 B2

P] @'\\“,«

%
3

¥
3
¥
i
i
§
i
§

' i
! :
‘ i TE
~ & ooy 3 o
. i g SO
§ i
v v
S +
i .
v Y
¥)
¥ 3
¥ G
i p o N
: i . N N N .
{ s R H b ws vy e §
- i : v . 1y §
: . 4
3 : e
: SO S I O I o
¥ L T 3 o N ¢ P N
N 3 g e 5 =y
. i = 3 =4 »
t N v
é » A - " v -
. i N B . »
¢
¥ e N
§ & . y
B LRI
i = S
i
; i " e b o
3= ? b s % Y
i b B ¥ 5 2 &
i I H s B
' d
§
w X
3 *
§
. x
$ 3 -‘%3 A R
§ : H A
. i i
N o i H
¥ SO " H
o v] B . .
i e %
e ‘\
i R § g\w
; B i
¥ oW i &
{ B i o
AR
§ kaal o . m
: e 3 S o anscs
¢ L 5
X B
¥
{
¥
¥
§
i
i
§
i
§
¥
¥
i

B3R P Raaaiet o
i i : LIS
X b ™ [e B
= S] g N
H i b B
Y & s g
Fos 4 X §
e %4 ! 3 N
§ i 3
ot N ?\ y 3 S N
S gl H b 5y s
R P & & ‘\ N s ¥
. o D AN b
2 i el _f I £V 4R g i
oy § 3
it i N ok NS {
) 1 R A% g .
i . ¥
¥ L 3
! N . 2 §
R s E 3 P N
i Cof A &5 s B P] ty
¥ oo D X 3 3 D H
: | B PR g s
t 3 N I §
N ™N WS R HEARS ‘
¥ Ean i3 x Pord S H
‘ W 2 !
s {
i i
: £ «“?\ ¥
i / §
) Wi e k - 3
i B owd
§ N oW N
§ W D 3
1 i
i 3
i § i
& t N
i i
1 .
i 4
Tonnr man v v v Yvee v Yve Y e wvwn e v v v e ey v v e rewe rwwe. vev. wve st vewa wews awan awan owaas amwa N

#
&
i

1
H
e
13

H on =
N W W
i AR AN)

B s

U.S. Patent Sep. 20, 2016 Sheet 8 of 123 US 9,448,648 B2

e A = &

™oy b

s Y w3
o = §

nétaraneter
383

%92 ¥l
£

%&

EN
w2
R
-~

5
Bl
- 5

B
o
B N
N S 1 S N i :
® & \‘3 > R N
.)
~ e
“
~

3
%
Wik

‘V\l\
N
o
R vy
ha®S .
— e @ D] ~
ot e ™ ™ 8
B NN » »
N
- .
-~ S
¥ @ B
N & @
v o~ 4 =T
ol J o oo 8 o RRLI IR
sl IR o T D W R
T 3 K H o T
! ; a ®
} e
S
&
ey
X . »
R
N A fow
ﬁi 'r{ L“. s‘\“ "~

US 9,448,648 B2

Sheet 9 of 123

Sep. 20, 2016

U.S. Patent

Nt

e ih] \..“ms

.

e DS

A

nIELIe T, 2 ey L, o 3 - P o -

L NP g Y. e 1 OBAES NS e hovesnesssrst ERE L G

s ML reenerany 2 e 4 g 230
ragretr S

VLB

e Mvﬂ..

U‘?-'

e YL B

consosmmsonnii i IAY T LEL LSS,
i " g
2.\.{.& P

s,

“er”

3

N

e L5455

o

A,
\\\

TSI (GBS

a9

s
e e 3 (X Mv

&

-~

U.S. Patent

Sep. 20, 2016 Sheet 10 of 123 US 9,448,648 B2

82 message Dooument {

837 repested Tloet viswlox = i

2dy optionad a3 d§“1ma recision = & [defaullt = 33
1 [default = A

112 massage Stroke {
122 EQEQSch $ANTIE point

>

float St&“ﬁ?ﬁ?&ﬁ&ﬁ&r
_Filoat endParametsn

foi g
e s
cn an

5int32 variableStrokewidth

3%
Apt:swal fFlpat strokelWidth = %;

ot
3

A s
LA +1]
PR,

apd

Fig. 10

U.S. Patent Sep. 20, 2016 Sheet 11 of 123 US 9,448,648 B2

4 %

¥ o PR TR i g e o B b T) ~ > RO 2.3 o5 Saehe o
Drawing Style Obisct 238, wselaanthing, st

SN v B v 4 TR R ey RS !]y ~F o % Ty
endParamebsr 383 {defayly 1.8} e LAR3S

. . . 1187
1188 e xP ral xi SN

5]
%4«01

%
G

:

.

¥
%
g2
P
s
)
L7

w8 e

§
i
t
f
a8 rel_al B B S {
i
i
4

U.S. Patent Sep. 20, 2016 Sheet 12 of 123 US 9,448,648 B2

o
o oL
i W
A S
%
Fancs
QX
o N
K & *
¥ ;'.‘-3
R ¥
= - b
pas o
w WY
™ BN
S "‘;
3 o
N
&
A
IS
by AN
i o
- AW
kaad
(. .
8
WD
R
3 4
23NN W R }
by A 5
e A o
= < -E ‘:; "i pES
ks g N %
ey e t & EEN
T - B N
R Y B
% kg
£
¢ W N
o)
~ - I « 2000
3 g Qe :
By =i
oY
™y 3 e ar
S & = o
o :\‘4 N s ™ DL
N N et = L. SSZ-
™ Lo, o 2. ¥
e P
Y
(e
o as
v S ,;;;\l £ N
¥ T & IS0
w3 e §

S - sy
05 OWTy
A%
wd 3
nc e T o
s SSU -x)
T
Y
3
ROV SO o e [T - s o s o oo
3 3
S i
§ i
e 3
e o
=) i)
; 4
.~ §
o

& b
EAS =¥
i 43

~ N » 33

US 9,448,648 B2

Sheet 13 of 123

Sep. 20, 2016

U.S. Patent

3

&
R

H

=

I AP0
“3

BRAFTS DG
BUTLID

=

N

=
Th e

e

eeeegpeeeey

i .
%
4 %
i ; S 4 i
5 « H . %, % :
s ol et

; .
i rrors reer sess. - rrr 20000 e
Biw. cvwis wwws ciww cwwwe wwwn' cewes oewws | wwww ovews e So0RKy00 o @Mm

SH LIPS LIRS
4%

US 9,448,648 B2

Sheet 14 of 123

Sep. 20, 2016

U.S. Patent

91 =

$3%:3

43

“,
SHIDUEIBAPUD

;

NS 1l
{
*,

88 =

e tor AL RURIRGLARYS

4%

US 9,448,648 B2

Sheet 15 of 123

Sep. 20, 2016

U.S. Patent

e amas | aman mams camnn amen mwa Snmwa mnn ks wawn camms ain. eaem. aamn o

M o,
H ks 2%, Lo, o V] £
t P P P m
Z wr ﬁ.
4 7 e 3
% TR Y R4
\\».. W, .f
3 Y 3
e 7 4
% H ¢
% 5. 5 "
H
¢
P
1
H
- 1
: 4 e
Ve
s, 3 2
H H “z
i,
3 e
: [k
H £y
¥
H —Ca
3
! 4 435
i i i) ;
H nm
P
H %
P
¢ o
7 %
£ %
¢ Z H
: 7 ¢
1 H
¢ ; :
i — H ¢
3 b o
¢ ;2
B oo s H
3 7 » AT
H 4 E 7 H
] o~ 1 H
4 1 H
i w0
1
H
L e P e A R R N PR AR e, Srne. seee e e e H ¢
1 H
H H
1
H £
Lo

US 9,448,648 B2

Sheet 16 of 123

Sep. 20, 2016

U.S. Patent

Fig. 158

U.S. Patent Sep. 20, 2016 Sheet 17 of 123 US 9,448,648 B2

s
@
ho:
g

pa p3 pd b pbi
‘v@% & & & £

™
b Ty

&

startParameter 381 - 7
= @, 8{default) 1883 new ERY

w 8378

Fig. 16A

LI I

AR 2

13 int 3*i59_‘ﬁ\ﬁi3ﬂéy‘

i ot slige voelndex;

i Flosy \i‘(@ StartParamelear;
1S Filowt si*ﬁcwanstﬁmster,
& 3

Fig. 16B

andParaneter 393/
S |

(= 0.375))

go@ f‘.‘ !"

U.S. Patent Sep. 20, 2016

prsrars
)
=
)
P

g
[y

¥

gy
4l

o,

%

5 S

e
g
a3

pd

Sheet 18 of 123

ol

US 9,448,648 B2

L F

v¢«c¢¢¢¢«c¢4~%

—

new SR 18es
w & 878

21y class Slice {

RACH it slice Fromindex;
23 int slice tolndex;
24; Float sidce _start

42

float siic

$ud o fui

RS

am AaY
st

¢ endParametar; £

s

id08
L
&§ W
§ &
R

Fig. 178

A gy P £
E : el Fo
StartSegpentt
! Log
i3
i ;
i 3

i
R .
£o0

S0 sstartParameter

endParanetey
{ddafaulty

e, §
3 13
IR Wt
8838
~ g; sy W 1\:}&-“\\
- 3 £
fBe, 1.8

U.S. Patent Sep. 20, 2016 Sheet 19 of 123 US 9,448,648 B2

~,

e e
ot &
Saa g
N
L SN

i

T
[N
.

boe

i

U.S. Patent

Sep. 20, 2016

Nt

&

Rt

BB, B
i;// &ogxg {‘;‘;n

¥

/

Fi

k4

s F ol ncey

rerse

3

3
#

hy

]

L
5

375

hole endPar

&

93

7

{%‘OgK ,

7

7
7

=
o
o

e

842

Sheet 20 of 123

&

¥ Xy

Fig. 18 B

US 9,448,648 B2

US 9,448,648 B2

wie

EN
N

Sheet 21 of 123

By

X;

Wing

Y
3R

ey

P
2

¥

Sep. 20, 2016

. s
row =2)
- - oF 5 £
% & O (7] %,
e oo e
%, \\w N , Y Y
§ f
%, %, 3 % % % m
H
H
: j
m m
(241 s m
e 3
&3 \
oaed H m
; oy ;
A % wey oy §
o §Wy P e
28 B £ 2 s R D o §
N Rk L3 I = 2. i ‘
3 < o) o % %4 &y . o w
% b Y @m. 3 s P :
4ol H % forl ew ,
StelF S iy m
s o 4 n@ 145 aget s " o \«u
&7t . .,w i o o z, Z, 2,
e ¢ B _ o % i ;
4 - 24 = [o d ol
Th 4 i fees [o 45 3
bR % I B o L T
ot § it Z. i 84
.y “ =
S 7 3 %/ m
LI I - - z. .
y d 3 g - « . P
7% g IR % IS -] IR
A B B . : R RS R : .
215 ’ BEGE BN B j
g o " iy dern 4
£] Fats o oy
- = H o 8 % o
4 % by H o o ol ».wmm M
L3 el e ; § o % 2 ; ;
il S S ; HEE [. 92
S, 0 o P 22 TR R 3 B %
%7 G ; “, L. % 4 & o ol . i)
B E AR IR Pl B B I B R R
%1t e % Tl 15 w b2 4 £
5 3 i A : b :
T e I W oot = sor
% 45 % 87
% b S L
ool e
% oo 2 d s
», 3 2]

U.S. Patent

US 9,448,648 B2

Sheet 22 of 123

Sep. 20, 2016

U.S. Patent

\.\51

e,
Frkd

4

I
5
1 1]
Gl 4aF
et ALY

Mot

e s erir rs erose

-

Pas

G

H

TAEX

R

Bty
%

]
f
!
f
f
i
!
f
f

74
[
<
LSO
gk

{

2

f4
%

i

i
& <

e

Sovw. e snon woow e woss snon

ey

Lanas Naane Asss e

AN VAR AAsn RS Mg

Fig. 20

U.S. Patent Sep. 20, 2016 Sheet 23 of 123 US 9,448,648 B2

s &R 2
k R .
B L %
TN 4 W ar
Ao ~ :
A S a
S TR X o
g Ny fl
e s
P] § s
W d o T P '

ot
o g
b
oY
fe
ARSI I
(S
W
o0
. o
0 Qd
B vl
& e
g
i~ :
e &
og
3
Wi
W
e
v
. Rev]
N o3
S
2

U.S. Patent Sep. 20, 2016 Sheet 24 of 123 US 9,448,648 B2

US 9,448,648 B2

Sheet 25 of 123

Sep. 20, 2016

U.S. Patent

¥te!
[amn.a3s

I
:

Tk
S LS

£ATd

it

i FADUALS
=pTat4)
01 P0u35

<

o

[AZR%.

pIetd
(1 By
AuTmrag

TET4

EEMINL:

PEsTd

S)

@by

e

. i

adAy

US 9,448,648 B2

Sheet 26 of 123

Sep. 20, 2016

U.S. Patent

(5131E315)
SBTJBUTIY 4O unyd

(445=)
pP1aTd 8dAl

¢ adAy

US 9,448,648 B2

Sheet 27 of 123

Sep. 20, 2016

U.S. Patent

AL IL P00 06 S

B¥etl

Lot 2

BLEGHT

kY

Tt
?!‘

e e
445

b Hivt

%3

A
e R

iy s
i SR

BayYL

o THG

US 9,448,648 B2

Sheet 28 of 123

Sep. 20, 2016

U.S. Patent

e

211
e
253

ok

£33

P

3

»

:{Z

VRS

b

e

By

£

o)

P
P23

o

Fig. 23

U.S. Patent Sep. 20, 2016 Sheet 29 of 123 US 9,448,648 B2

Fig. 24A

Fig. 24B
(Related Art)

US 9,448,648 B2

Sheet 30 of 123

Sep. 20, 2016

U.S. Patent

s -,

o,

AN
-

A

Y

042 o (38} oalaey uongmiugyy

csssssssss

",
1...).
3.(...

o
R NEIRVENY
i

Chrois cemis wemes wemes cees ewde ees Semem Semis Swme

m w w)\.{.«I\.. m

s b (s yonl v oae s o W O
Y% LIS Wiy CIRIEIEYY ool 110G PBIYIIE Sw ta— s o}
,ff, w _ : 3L

i ~

o e oo oo oron onor oort

v mmsks ssmns sssse smsss ssses sssss essss sssss sssss
lue ey

4 w
\.\\\(,.r
%m\\m m@\maa ¥y S

o - \\ i

“\ v

f
A ok e Lelnn sids Busein

o s

Lo
&%

[UNURRIAN
N

Chr srpp esse. eePpi SPPi PRI PPPPL SPPPL PPPPr Pess

Ehga Ny

Lo
LR
N

U.S. Patent Sep. 20, 2016 Sheet 31 of 123 US 9,448,648 B2

~
B
e
™ 3
i i
N f 3
Lt I Yo
g b it
F iy
G 3 s iias IS
s B 3 I =
H . oS i
o BYR o NI <&
At H 3 - hanell 34 ~ o
- H 3 H
H - H
N R el
H
A N
&
o< e

Y

n,

e PR,
ft S

3

>
v s
T i
NN SR e
AN
Pl o e N SV,
&3
WY W3 o~ N
) Xy
o~ L ER :
- N ~ 3
SR S N e H
i .
i
$ i
§ .
i
3 H
H
3
H
¥ B
33

3
H i
a }
Ao
X -y
i i
i K
&, 3
& H o
S o
Sy A
H }
N
=
e
Fg
3y
ol
1
i B
o : i
N8 H
N o X D
H x> oW oun
P BT
- i
JENE W X
¥ e i
£ My e e oE
&
g
3 b }
&
H

oy
W
o

e

US 9,448,648 B2

Sheet 32 of 123

Sep. 20, 2016

U.S. Patent

M
SEEN

SR NIOP LD M R

SOPTFY WM WL

o
o
g

[+ 55 SRR
e

\\\, T

Y

LS/ TR Y a
R - A L .&g“ o~ w m\wmxn\ 5.
G i L5
..x \!\\ A
Tz oo T S T e T e R rrev. weerr cove reve woer prve pre. eory

GG VR T
SZ I T B

%\W\\mi B B+

P A

\\.
o1

N

somy WETRETTTE py R T TR B G Fa T 1

\\\\

US 9,448,648 B2

o e e e e e e vy

-~

A ¥ sl suoag

{ s L 7O s

Sheet 33 of 123

” fuid = 130U
L AU 3534 . A
i . b SR SN

P

Sep. 20, 2016

U.S. Patent

o
T
o
5=
¥
&.
ol
2
‘::b'\
i
&
Bxe)
iy
&

8
X
w

$B

o

e‘ .
= H
&

T

£33

AN NNARL MONNL CONNN. NN NN ANAN. SRR NN et

M

U.S. Patent Sep. 20, 2016 Sheet 34 of 123 US 9,448,648 B2

A

P

35

(AR

RN e e A

A

A et]
~y
7

o

S

%

A

Fig. 29

G

3

7
7R

QO

;~ WY

A,

%

b
E
«
&
%
oo N
J— N
b i) Py Ry
I 2 4}
i3 o w e
151 ORI S 5 :
a4 L &N fo N
e S > e B B Sp
il kY B an - & &
i { YO bon ;
] 3 e <L A
; & 0 b
3 = Reae <3
e 3
i s
i ! 2
W § = 0
S 2 a
{ e Ul
H {r
H
. 4
¢ T Q
o A VSO S RV WU N
el M ¥ SN K
o3 g 3 & 5
= 3 i &
ey W] o
& R 5
m E St
SR
; RN
3 & %
3 O & 2
: B as
N B z W (\Ai‘
,,,,,,, i oo
N . XK .,
‘{?é i SRS e
) § LR
e o
=L AL AL
T
i .
3
it
A~ §
o =
S Ao U ROV SOV UOUVIE WUVt UG SO
o ~ e 3
Y > R
e & 3
&
&
L3
3 ;
£ {
e o

U.S. Patent Sep. 20, 2016 Sheet 35 of 123 US 9,448,648 B2

824 1
o~

fLengt

Y Tx Bx
534 1a) Packst Ratranamission 2 TRUE FALSE
kS -

(S8 10 Birokelata fagment Enslie 2 TRUE FALEE
{83 1) mmaim delay & T Brvene]

3 TRUE FALSE

{52410 Mes 2 ENARLE DESABLED
{824 1) Audio Syno ENABLE 2 ENARLE ERARLE
(R824 12} Chor Paramater sef identifiar 2 #18&

- ‘ .
Tyna Langth Valug

{5234 Da) Deawing arss 13 8 #1223

£200, 303

34
(834 Jd Dhrawing Tooi Sat | & uit_pantost sel

L
“
-
&
w0

U.S. Patent

Sep. 20, 2016 Sheet 36 of 123

US 9,448,648 B2

3
d
"‘V‘F“
£
e A » - ”\.
yRe Langth

£524 N8 Liser Acoount Priorily 2

High

DENY. Use 1M
{8243 Blook User List

RENY: User_ 10 n

ACCERT AlL

Fig. 30C

US 9,448,648 B2

Sheet 37 of 123

Sep. 20, 2016

U.S. Patent

—— SO 9N

x4 ;
o e e e WERL F v

\\\x

L)

)
4 - 3 aneems
waatq ; SOLNA AN WY
Aty s Bl gmx%ﬁ iR 21 q\a
SUE Ml YA

9l

P
X

w\M!\\ A

" g L
7 ke

0¥

Y

o
o
(O]
o

Bobsacnrassansasssseone

%

. e
it
L

U.S. Patent Sep. 20, 2016 Sheet 38 of 123 US 9,448,648 B2

o

R) ﬁ
£ -
B -,
Aot o
e <
fe
% ool %\\\‘\V\\\\‘ww\‘\\\\V\‘\\\\V‘\V\“\\
m‘x ¥ A8
o
w
’g:“c‘ § o
s
“ o £
o
F
g N
5
- b
N b
fa
»:qg - ; e
-
o3 Wy o e 3&"“‘ e ;
{
o
e
el 3
3 mw?
P O
PR ie
i § m
3 0 Runane® :
30t § 5}
3 3 30000
N 200 ¥
H i«i«-
H
i
T i
o H
% b3 R - e panns anas e
& N 3 S FUNUHITE S W
§ ® R S -
o '
: W—
H
i =
; e <
e 3 ™ ™ X5 &8 Fen fe) cet
% Y SR R L pA Pl Qo -
SRR L o & @
ol 4
3 i3
. 3 2 ~d i ~
Cin i S T N e
i ¢ H N N : H
N S S T S S S
\
3
I
. §3
\‘: o E; &3,
Loise 2
g iis 5.“‘&.* ‘i
SR :
& } S
; £ e
I3 &
s i
4
o i
- § S —
=
{
i
4

Ly St

US 9,448,648 B2

Sheet 39 of 123

Sep. 20, 2016

)

H
H
H
H
H
H
H

o

SEFREERRRREREERNREERITTTRRRRRERRRRREIT

S

£7%

P

0,

wer
paos
$rras 1mg

s

5

o
x T
e
oo g

S]
w8

i
Ty
(3

{.
EA
4 o T
.‘Ts

e
SRS
= D
-w
&

U.S. Patent

s
33] e
e vk .2
P a3
B 1L

[
s AMV
P

U.S. Patent Sheet 40 of 123

Sep. 20, 2016 US 9,448,648 B2

Q@ W
& i '3
23
&
5
&
,‘-"
¢
£ ’“5».;
., Wy
\“.‘ i o E;s w S“Is
. 3 & Wi o
< e ’ Y
oW LS o &
3 TN A
Q &R0
& 8
£ W
3 £
A o oy
= 8 S
% & e e
) B = W
4] R
At Y R
i3 L S
N s Do ot
u B - e B
I e 1 S
a5 [o -
¥ Y
py . wy
R i
]
3
S
XX
.
F
-~
% o [
3 R B =%
P ey e
B X M X s i:;: RS e N3
R 3 <
I g i m
s R R
g3 i N 2 I
FR N 3 3
¥ 3
§ R o
QN]
§ SR . SR
K is owm R) B o3
b ke QIR D W e N B e K &N
¢ iR B & SR E - — X
L % TN & 5N &5 L S T
L i
3
Al Ry
x "@}_" BN -
EE = M v A wR TH
X By F i
% 80 o~ F o B~
3 o h A o2 i, &
N [,:.a v B3 e e R & <
3 &R N & ::v" i B e W
\ PN B xS fa R 43 ke
X PO I R i
Y P FE [
T BN EIN P B
5
3 ; ; H
{ X { i
@ - o @
1 N
. ~ RS
& REN w

DaTA K BOGND

&

K

%

A,

A4 1

7
i

ZHL

ATH IR

p;

o
19

U.S. Patent Sep. 20, 2016 Sheet 41 of 123 US 9,448,648 B2

E . &
Jwmow L3

B = S
’_e'
s“!
\“"‘
& piad
& Wt &V}
¢ N
T
o T e
£33 e N P
= &5 =
¥ (IR foow
3 QB N
£} X W TH
=y oW :
= 2 & B
S w}) “vent
- %
= = =
& i @
o E

,,v
>
| e

e - .
B oy T T3
s b e

& % &

2. 3

€3 %

b %

own
Y =
R
X b D
% S
R
y
K “‘\
% & -
3 Be e,
" &
3 2 i3

Fig.35A
A HIK B

U.S. Patent

Fig.35B

Sep. 20, 2016

neg,

v,

o

Sheet 42 of 123

137 o &3

DR
Wy

St

Steohe 1D

Lameing

$

R

=
[N

Py
s

&%

.

US 9,448,648 B2

U.S. Patent

e T2

Sep. 20, 2016

Sheet 43 of 123

US 9,448,648 B2

Q-
(12 \

P

s
P
>

-

-~

23 Tl
By

o

2

.
o
e

5‘;

W

Fd

NP
FHI58

g45y

S
N,
N
A,
N
A,

&
\Ai\.

i T

Socend < Z_t;‘(“
“\M“\\m
X N
o mm\“\m‘_«&g‘@ 3¢ e,
i i T, T
¥ e EAR 0 R N
WY e,
i —_—— S_—
E R —
N
e
&

F4R

#41

e
AN
A,
A
s,
A e
NANnan.
s
w;.,,\

U.S. Patent Sep. 20, 2016 Sheet 44 of 123

US 9,448,648 B2

Bl

ER s
10-%
e s
{1} {10
111 Sequenca Number
N
H458
e o s oy o
SRR T
\MN\W\W\-A\M
N

4

gz\si”\“

:
H N
2> AN
Bl ¢ 00
N S L
e,
e,
s
R

3\#\“

W N |
N
N
o~
N
RN
s
-
“‘"’*\M\

48T

O S
N
AN,
A
S ——
.
S
S
M DS
o S

rgrRived

1800 DATA_INK_ALLOE
\
\ti\\ 5:}

A

§‘m_“m-\»m\\w-w

AN MY
Jo L EABRG
— A .
A EEaY
“\“M‘M\M SNt
'“‘“‘“M
T T — {gvras
e, M N
et

i T
;

i v

b Y R

3 £

8 REQ

Aenfimg a8
B
X3
S
- fime TR

Nl
N
.
—
PR
A A
‘ ns
T,
RN

BN ALLQE

1801 DA "Mﬁ’\

IS8 48T 4 m 488,

5”,

Xt

i3 onrrachion 3 &:;{ﬁ

US 9,448,648 B2

Sheet 45 of 123

Sep. 20, 2016

U.S. Patent

AL
53]

SRS B

w3

rikt

US 9,448,648 B2

Sheet 46 of 123

Sep. 20, 2016

U.S. Patent

aoc B4

satryy srsnheg

US 9,448,648 B2

Sheet 47 of 123

Sep. 20, 2016

U.S. Patent

0 Gesd i

P

3 &
BIAAN
o~

Y

e

£

3k
R, wdiovs wien g,
'

Nbor cotse cosee sose seess toags eose sessr WF
4

¢
S5Y#

B
o

2,

US 9,448,648 B2

Sheet 48 of 123

Sep. 20, 2016

U.S. Patent

US 9,448,648 B2

Sheet 49 of 123

JAN I

oy

SOV A L .

(WAL

am

Sep. 20, 2016

™
-
o3
T
S
o

%

5
7N

&3
<

P

U.S. Patent

QO
T

G W0 D
o

SO Ak YL L

Do
o
Uy
o3

1129 Ty §Et1 4 A0 Rt 115 Pid

2,
N\

L

<

A
.
b
&=

US 9,448,648 B2

Sheet 50 of 123

Sep. 20, 2016

wiss,
= oo SR
/ w

7

SO AN LY : o
L5t T

-
0

x
PG e
) i
.
2 m B 5
i
Zre o8 B .
i B sm« mw\.\.{

R

JRETERR.

[

{

bos o = ;

A IO LS .

v oo coced s oy coew oo e pev vt ceves vt pee ovoe. coves seuesses

£
R

19

CE g AR X

3 2]
RS, i I AR A
L 2ipeg 3 DA MO RALD

Cavarsnsasios i bnsinssnsit

£ o H

ho
o
WY
&
o4
&3
e.m
Fies
3
i}
P
£ 4
O3
Vs
.
o
fo)
&
haant
.

U.S. Patent

R
~

o
£

o

&

a
o
X

U.S. Patent

Sep. 20, 2016

RGN AN AN AN e

RS

S
S

&
.k; 0
x> 0N
=
43 JE
b

Sheet 51 of 123

AN AN AT WA AR AR e

US 9,448,648 B2

o

A’Z “\‘}"C e
)

U.S. Patent Sep. 20, 2016 Sheet 52 of 123 US 9,448,648 B2

Fig.39B

-
503
&

N

US 9,448,648 B2

Sheet 53 of 123

Sep. 20, 2016

g o i .
Lk S
GSUNGS WM IV L
£
PAYS]
T P
op

Ty i Iy

e e e

A VU S
Lt Tt g g S
VAR Al A TA>
o
A1 S
:

¥
-y 7
w7 Lh et

el

e dohd

e

U.S. Patent

L0

US 9,448,648 B2

Sheet 54 of 123

Sep. 20, 2016

U.S. Patent

L7814

[

sy

R

S A 3
td

s 02 sy

A LW LOEY 1

cnnre o

;AR L

Y
Bond

Zik GUE - W0 S 47 L0 L 107

e

U.S. Patent

@1 |

el

8N

N\

{
e
s
§
}
§
|
!

P e
LSRR
H AN

Sep. 20, 2016

WM\%

Sheet 55 of 123

US 9,448,648 B2

1RO
w101 {0, 0

Stroke A

P W
\\
Y

§ 3
§ X
1807 Nt
\\ Offset_1_1
-

“‘“\\Sirg}%isx 8
3 &
v
¢
$
X
s

\
3
N
3
g
3 Q,i..-.-i{.\ fa)
1 eRTRE e
R

US 9,448,648 B2

Sheet 56 of 123

Sep. 20, 2016
antios und

2 vt
»ET

o

U.S. Patent

3 e i,
H o e mpon,

4 =y

o d oy 5
w7 ; o
e]

U.S. Patent Sep. 20, 2016 Sheet 57 of 123 US 9,448,648 B2

. 102

53
S
i

SN

L 3 .
D M AN LG N§§A§&‘
¢ hEmanics ung Ny ~
AN tieai,,t::ie $
& Aggregating \§>eﬁma‘v‘ = M
S ambadding seman 2‘ s S
¢ 1501 DATA K _ALLOS q 81917
LANA K P =
S1918 1801 DATA_INK_ALLOS

d e*ir *Jif‘q ’\W, oy

iRm«;s@ 1 vgb\% -
L S j

143
e
o ae
e
6y

US 9,448,648 B2

.y

.
3 T
0 EC“
2. 5
T

St

s
o
S
&

Sheet 58 of 123

EHT W

s
‘\\\w\

Sep. 20, 2016

o1 ST

U.S. Patent

374

LI

p hd P
(1Lt
ydh) g

WBAS uBg 2

B
N

~{3] 40}
{1 wridy) 10%uss

N (& inaND

UORIIONY
BRI

U.S. Patent Sep. 20, 2016 Sheet 59 of 123

.
Sa
&
&
%
7
5
;" s 2
§ § 2{}
o U0
i §’”L**
! i
{ i
¥
t E j
PR O N
£ e Y
£ § 9 %
H §§ ‘i{ &{%
Y PR
i gﬁ § o
o P
s 2y #
i S £
. W .
= By :
3 8
& § e
% = NN
A &w_§ 3
3! B
%3 S0 Bl
04 & &
Ly 2=
AR
o~
3
‘Q";"
L

1

US 9,448,648 B2

US 9,448,648 B2

Sheet 60 of 123

Sep. 20, 2016

U.S. Patent

0 OO0 ONO0 GHK O IO R eoR&oﬁ&onoo.oSoooooo OO 0L O B

(L 1710nd1e oImasssd yimy | S0AL
RIen Woss uad

§

H

m ",
{ _ %Lw

H
D07 BIE0 WUl M
i
H

nggggg

t
3
s
: ;

i fﬁ L0 o SR SN &M -~
| }
m

i-i-0

VAR o) fhely
SO0y A0 ISR

Wmﬁwmw“«\w .,Mu.mcm“ W»Anwwewsnwfy MO G0 GO0 G000 GO A0 83

(-1t Y s

US 9,448,648 B2

Sheet 61 of 123

Sep. 20, 2016

U.S. Patent

3

09y ‘Bid

. LHEEDIE O] B :&w

WIBA L

N

A L

FEEG STI0L

N

A

oL o

.

wie, 5
R

(ELnemt)
UONBLLION IXaiory 7

4 "%

w@\%@ ;

US 9,448,648 B2

Sheet 62 of 123

Sep. 20, 2016

U.S. Patent

JBRIOS

100G1L

US 9,448,648 B2

Sheet 63 of 123

Sep. 20, 2016

U.S. Patent

ke
IO

Mgt
Iy

M
!
M.

KRR RS VR R ARRK ARRE RRRA AR

000 R0 W
Mo

TSI EAY VPN

00w

R GRR GRE GRA ARRA ARRE KRR RRAe

W A A R KA KA KRR,

eua;

US 9,448,648 B2

Sheet 64 of 123

Sep. 20, 2016

U.S. Patent

8t Bl

VB GD-GT15
R R

{
{
f
;
§

.os%:iﬁ.u:i:iittaa;aiaias;

~w—*
[x oo 00n 00n 2000

L T

o AN

HBLITP-YS

N..,:wm

¥

3 (ot

US 9,448,648 B2

Sheet 65 of 123

Sep. 20, 2016

U.S. Patent

ERHORANS UONEEHIA) pnon m&w mw m
walan aifys Buwssiiyy - _ :

A R B AR 8 N 0 0 850 0 8 A 0 8 828 81 80,0 B 8 8888 80 0 R

v

MEICI-GITS BR0R 1000y watussing FIY

AR IR AR RN e e

H
234 3
:
H
k1
*
»
R H
H
v
v vy g 15
i R
»
L]
i}
- A E
ras v o an R ™ o R R NPLAD N9 P P R P B RSP NDID K P R R R B PSR S ;4
B !
i i s e 0 wm e R e r s spenerneo e e
y
v, PP L b i b R R L
LIPS

sovan g

Bty

o2

Ul AN NS N8 0 0 0 1 I 0 I B e S

AR BRI Ty Ty SRS B T

&
m
5{“}
PN

U.S. Patent Sep. 20, 2016 Sheet 66 of 123 US 9,448,648 B2

19 ol fwmw‘““@“‘*“w i point %}
v’ ™ %

WHDTH WE

HEIGHT T ®

£ ¢ N e HEIGHT R
SN 2 e

{REEMT) reproduced canvas
3 eiroks B ‘(SOVARS AreR when the strokea is reproduces

Fig. 48D

a
o~

| ks

ersechon v i s d e
A ;‘z&fﬁmemm}

a. fimestamp » b iimestamp a. tmestamp < himsstamp

Fig. 48E

U.S. Patent Sep. 20, 2016 Sheet 67 of 123 US 9,448,648 B2

Shape flling:
1. Envelope of family of cirolss
~y

2. Gradient anti-aliasing

?aﬁiaées& $caﬁerm§:

DO I A N

Area r&s;i‘f*aiim:

1. Close {} spding
-'}‘

““é*a«s framation fnove, shioe}
a*‘i of & stroke abjent
S-\‘\Si?i:“\.iﬁd‘“ﬁ by closed apiing

U.S. Patent

Sep. 20, 2016

)

Sheet 68 of 123 US 9,448,648 B2

/ WIDTH

new 303n

o

> \ new 301n @;’%»3

Lot - Ej}:&\\ -
Sngd < S
point -

18t
pair

Fig. 48G

US 9,448,648 B2

Sheet 69 of 123

Sep. 20, 2016

U.S. Patent

Hey B

xwmm,zu ‘ Am

DEseIo

-

d 1&\.\
p

\\\\“

v

A

QAR5 a3 15
M

ugn

US 9,448,648 B2

Sheet 70 of 123

Sep. 20, 2016

U.S. Patent

ULoE o

(g @,&@mw g

s
vl

ug mm
AA\\\\.\\

(Z &30as) ™
7 eos upoe

U.S. Patent Sep. 20, 2016 Sheet 71 of 123 US 9,448,648 B2

.
B
&
X
L3
£

a

N w

A b

)

W

Fig. 48J

37 Y 5 £ P
o ;

PRI

~

o a~ R
5 x W PR

$ow s R

PO oo

&

U.S. Patent Sep. 20, 2016 Sheet 72 of 123 US 9,448,648 B2

@
S
R
o
e
83
~

2 Carrran

Y

% Vet
2% st Tt

i

%

Inkbabads

L35 B

18y 014

US 9,448,648 B2

{elmre sy)

WP ’
3 i s g .
i A} g "3

By BULRE 5y

LUY Z

UL *
_ 1

Sheet 73 of 123

BAOYET pydry

Y

VIpuadTYS TR TINAY 3T

b ipeewsrduogun 7

=]

aurod

-

Sep. 20, 2016

U.S. Patent

{Wnes

"

wuywagpessg © {1 LT YER

GYDIGE g

US 9,448,648 B2

Sheet 74 of 123

Sep. 20, 2016

U.S. Patent

STTEWE BUT
A jut

§
§
§
!
}
i
i
§
§
!
§
}
}
}
{
{
§
!
!
}
i
{
§
§
§

64 "Bi

{
reudie
Lgripes
HAposod
Hung

007 BIED Ul

i

'
_

D

{

& K YB

RIS SION0D

yradhy

{4 L0t
EIRD JU0AD URd
Nc\t.\.\t

p;

§§§§§§§§A§H‘M§§§e

L1004

e

i.\
Mg

e KAk AR KRAR ARAS. RARs. KR RRe AR KA KRR KRAS

/\MQM il

SO ‘uonentidy

3%
m

m%&ﬁw

g ;
ninssaid eoy
AR Yy

‘huEIS B BIGNDE

Ladhy

{3 L0t
BIED JISAD US4

U.S. Patent Sep. 20, 2016 Sheet 75 of 123 US 9,448,648 B2

e o i~)
o s
< &3 & o
DN £ Od N
e b s) and Kol
s & > 3 e £
L < &
™ T &
..-“‘ - e
&3 &
& Rf I
“f \
r
&
i n s
e v
w QU
o e T
E) o e
Newe” e o~
= o o
i :
~ Sl EN
?\‘v . - ~
A & &)
At Y $ oA =
o 5 ¥ R '
= o §a 8 3 ,
A R o3 - -
i = N RS JEN
% > - T m
. & - o6 B {:-:\ 3 ’
~ 9 < B i3
i O s S N o IR >
W3 =2 & o s m
" b o W o » ot
R S X N § i
b -~ bt
Roos
e &S
$3 j3
ey
o R
)‘\-?
3
&£
3
{\‘..
3:{3
3
£y
8o
-
fax] -~
L™
¥ ot
Pl
Rty
b R
e
L
Yoy
] -
o
fes
Tl
&~

U.S. Patent Sep. 20, 2016 Sheet 76 of 123

Hosst Expest

_ RS W
Cotxfa Moo)
M s j@

%Wmmm

US 9,448,648 B2

Mirvelooity 3 {3

3 X
22 & 03
28 <D

8L
FHKS

¥ e vadoclty Y

fm.tm Synwrdns _

mmm\

Ontxd | f\ é*mmam "

§Mmas \

v e e B

Deriexcbing { é 3

Fig. 50B

AR SR]
. Al
1 oo 28

\Q;; 1.0

US 9,448,648 B2

Sheet 77 of 123

Sep. 20, 2016

U.S. Patent

LG Bi4
0= YA = 0
m m
| 7 —
AUDDIBAREIL ApSOiap, AUSOIBA LI

duwmsswyindunsel - duwigseuwy nduiiusung

‘ = AYOOIBA
Fuoisod 1se) - uoisod usLInG |

U.S. Patent Sep. 20, 2016 Sheet 78 of 123 US 9,448,648 B2

X 3

P
H

24

o

{3 e
? s
124y
oY)
4]

SR &3 S

e = os

£ TR

3 o

Bow W o

s ¥ oo
X o TR G
D A
e - S A N han
(S R
< @ 8 W

I

P
):“‘ ; a—
. . N
P F & L
— el
Q8 \N‘\“‘{ S o
o3 7 Ao
- e @ '
- Tt
Y 3 ool
2 AN
S T W
e Ll
R
@y)
ﬁ P &

14
Fig. 52

o Lo
e W W Is
o e - 0y O
" RSN
N] R
g}: [N S L RS
P
3
-
Pt
oo
et
3
O & T
hes 2 M B
L o~
[. = o™
™ = £
o EEE >
S 4
WS S £ oy
I
‘ {
P P
¢ o
= =
o L
""“Z’i i o
3 w
e -
Lk & R e
m) w ::: L)
s L
ﬁ f R PR
& o>
NI v AW

US 9,448,648 B2

Sheet 79 of 123

Sep. 20, 2016

U.S. Patent

{cfad)
(NT == 48vHd

eG bid
{aaaA0wuad) {NAOQusd)
TGN ==T8YHd MISTEE == J8YH

U.S. Patent Sep. 20, 2016 Sheet 80 of 123 US 9,448,648 B2

Radius
&
10 .o Pa‘:&i(ﬁé}t}iﬁ
LT s _ o _ -
AN &%G%‘s@{}%{}{{}E{?R;f N
A\

‘ A‘\‘ >

:
¢
,
v 4
3
0.0 0.0 | 1 *;j}} Velogoity

US 9,448,648 B2

fou
o3,
b4
2,.,{ ;

4]

3 froen

fhy
£

.
4
e

Sheet 81 of 123

Sep. 20, 2016

% oy
iy %
e
L i
P i B
%M PR
7 b Sem
b L =

oxi
H

Jerive 8
i

{ iy e
- N

43
L)

o £

e 4

e

¥}

as

acH
For by

$1209

U.S. Patent

A N
Z 3
R

ul fun

¢
A

oS
ﬁm:

Dhavhve slpha {op

o paran
s

Fig. 55

HON)

e

¥
Y

FOWER fis

Vi

U.S. Patent

Alpha {ransparency)
&

Sep. 20, 2016

Sheet 82 of 123 US 9,448,648 B2

1.0
POWER
) £
/ < SIGMOID (INCR)
;
0.6 0.0 10 Velocity

Fig. 56

US 9,448,648 B2

Sheet 83 of 123

Sep. 20, 2016

U.S. Patent

.G Bid

P }

5 §
3 2iris U ¥ §
M fonipry LxIE Bpuny {rudyy “anpey KKK BpYY § g
! 74 B) M w
i . % T gL s § p
i BEEG T _ g ,
m 4
M o 7ot w&ﬁuﬁm,ﬁﬂmv,\m ! v s
m@wwmsf&\%fm wineyEang Fupoauy Wf\.&@&akm
| . j
mmﬁmfs\\f {eudrgspgepen odAmso s s sy Suprnsy ;
: §
LG s&\f T TR SERAS v 1 ot Ay §
LS ., ™ WSRO TR FORINY
3
S ™, {29 UOBBIGRUrS Ry Bupnoug
. [yera RupIe iy 0y s 1

US 9,448,648 B2

Sheet 84 of 123

Sep. 20, 2016

U.S. Patent

(UCBInRILLRuISSD peubis

{LTSONIA 9

_u

¥

{ucisinaidipunnsn winsubisy

AT AT e
Aoy
TN,

{UASIRIATBUAOSE |, Aar 100U) =

s
@<
S
&3
€3
33
fann
&,
g
3
Ko
R
W
N
3
e
o]
X
2
S
g:%
]

et
A
3t
‘01
50

L

01D, (g indul , add ol Coenonus Dios 180

Ny

sty Gisund = BUBa-n

g &W oS 1, 81 ‘mmr mam MO & BN -0
% mamﬁwm{a@m . hao-ehai{is & ey
wéwmﬁﬁ&m%omm y %l & PO

.“J

f\esm

Livis

T e 08 OF S AL D B
DO O OO

<%
w
{5

US 9,448,648 B2

Sheet 85 of 123

Sep. 20, 2016

U.S. Patent

66 61

9l -

NS

L9

BOEA 2INOSGR
oL /NS R HOUST/LIOUS/U
7,
aul, o1 ey, woy aseg, g’
upesd 1) auodxn 5
Y 1oy
. SN\
HOISIDRI4EuI0aD, Ag AIRInp v
yonsey 1 sundsn g
120y

US 9,448,648 B2

Sheet 86 of 123

Sep. 20, 2016

U.S. Patent

P e
OyLE “
*
00¥Le
Sivie
% &
¢ %
{3t
jaye (UCISIORIAIBUNSSD)
001 %

boox OORLE
0L ¥ O0PL e
ooV % OOl e
ool A iyl o
OO 2 O0PLE
VOO X 000LY
Lo % 0000 Y
210450

US 9,448,648 B2

Sheet 87 of 123

Sep. 20, 2016

U.S. Patent

duipos Adosug “83
usissaIdiunD puosas

Bupon yidus-uny "8

wenssasdin 1504

AV /NS EaRsi

L8ls 2124 5

LBLE

B0kl PUODES \x/f

PSSRy

/NS

vuosiaald 1edap
58 FUzUenn

LELs

Laih

ANON

US 9,448,648 B2

Sheet 88 of 123

srupes ling

(XERT AL TR R4S

LA 43 RIS BALEBCY

®

Sep. 20, 2016
3

U.S. Patent

w
57

U.S. Patent Sep. 20, 2016 Sheet 89 of 123 US 9,448,648 B2

LN
e 2R
NS
A)
e
W Iw
eec SN T
= ¥
o &
X =
A
JE I
e
v
o3
™
>

N
i
i3
&
g
§53
& Q8
Nen o
N
=
bR
i %y ’
T
= o
N 0
R R - %
& X faed
S5 o
o el
ey «i:»' v
=y a AR
& W M
Y
L] I i,zm.
wE R
o X X
— &
B3 s
oW W
g W i
: & foael
> ¥ 2
® o Q.
= o
= e
& =
o~

L

US 9,448,648 B2

Sheet 90 of 123

Sep. 20, 2016

U.S. Patent

v9 "Bi

‘SIOUINE
‘gunod
BEHWONS
%
L0 o »
e et | w00 s gt
eyep obau uanesyddy = » 007 BRI

US 9,448,648 B2

Sheet 91 of 123

Sep. 20, 2016

U.S. Patent

g
o - oo - - o o o 1 G 11 7 o 100 o ot 110 20 -
i §
i LIS o Lory | i
i ¥
; fenspey Kxjug apaseq (eydpy smpey KXy epossy || g ;
: } ¢
i
B LS, i1 ! }
¢ agie ¢ ;
§ ! :
w PALATAS o) a4 mersypsod » {ig of sy M,KMMQ o M
m@w@g w%&%&ww@m Fraps W{}.
{
wm&wmg { o1y e K SA L LS BRI LRI g
: §
0B o Saad Tty TSSO > 100 =1 B0y §
&. £

0000 90000 WK KEOY MO0 G000 0000 ROXK XOC R000 9000 D000 X000 20000

WSS T I

IR UDISIJADRE BYRITMY) VRIS

{ TR VoA, BPOIoR e]

YHROHE

US 9,448,648 B2

Sheet 92 of 123

Sep. 20, 2016

U.S. Patent

09 ‘b4

947

O o= YR I0 ¢

T LABUIDRD 7 to-ndinp anmn%m?@ma 2

g Qm DRAEEY 7 Aoy (B0 « Aoty 141
SIDISIISLABUIDIBE [Ke-duiiegy) = Ao DL
P

1% woreddun Tricuaod on

L DBOUy JCHHOG 190

Rtk

UENNIN 3L 0L ORALY &m?,wﬁf EOY I BydE«-ng

TSI AR TSBE § enipel-ndn 1800 e SDIDBI<- N0
AN USRI IBUIICE / Ae-nth i BOy = b VG
CUTRSY GUISIBI ARSI Pty bl §U w181 Ko jF

f..\(.w

E::},,\Ny“‘
0N £ A A A B
SO DSED

x%%x gt

-
s
-
R

&

US 9,448,648 B2

Sheet 93 of 123

Sep. 20, 2016

U.S. Patent

19 Bi4 .,

T T

s

]) i

%

sppumianiiesy InEg

FpRus uEuirig 190

e iur
T B

IBRRUS LB 15413

£ 5 LIS
bR ARV L e]

o
et
s
3,
B
5
33
WY
bay]
=
o

5 BAIBL
B A SARLIY ADYISs, PRS0

SRl

ST W XOR WD WG NOW NGO R0 TR KRR OWR W ROR RN0 WO R AR WK g

ban anns wan aan annne A

AR

U.S. Patent Sep. 20, 2016 Sheet 94 of 123 US 9,448,648 B2

....

o
SN

U.S. Patent Sep. 20, 2016 Sheet 95 of 123 US 9,448,648 B2

8 &

_

Fig.69

U.S. Patent Sep. 20, 2016

Sheet 96 of 123

it g,
sttt
e st e AAAARARE
A A AL A b e R ol I IA S AS o

US 9,448,648 B2

U.S. Patent Sep. 20, 2016 Sheet 97 of 123 US 9,448,648 B2

Fig.71

MOID

¢
3]

MEL

US 9,448,648 B2

Sheet 98 of 123

Sep. 20, 2016

U.S. Patent

HEE] DBIBINOIED BUL B0IM] =
suiod Bupus/Buuibeq 1o upew

ARCE

{3 =
suiod Buipus/Buubsg 10 1pey

US 9,448,648 B2

Sheet 99 of 123

e s,
" o,
~ S o0 srrte
Ve ., ., .
l\lr x
H % gt ¥
\x\mi\\ e %
-~ E
P e e o g 1
. f . s
) e T g }
{ .m.z\\. : g, m 4
o,
: g R S
, 5 m e, }\..\
\ - o O
\ o~ N m M
i 3
}

Sep. 20, 2016

Y 4

U
e

et 1R e

v IONSS | ;

| HBOIBAE,

svf o uoyEsdily

e,
s

RARRARRRARRASARARES

Py

ey

T

FAsY S

kR

Y,

U.S. Patent

; 4 i e, s
FHBUAIBG, b

£l sunsy Ly A

¢

US 9,448,648 B2

Sheet 100 of 123

Sep. 20, 2016

U.S. Patent

(MO0 2ypue 100

7/ Bid

L\k

B

BB BIABIT I

1] S

gmmm By

WO BALLIO L

IR CARESTE H1Y

Aot e rev i et hrord

.e .

wmg,« AV
MK«»MQCK
{7 LIedni

'\m\

e e s

s
£
SR

B P

{
IBULICE UOISERUSURL]

NN ANNR ARNRYRRNAY

N e S
ﬂ, PRI m — 445

§
[E N P VS VENENVVTY

e) sddy wean usg 7 T g

. . ks § re ‘H¢

{1 Lian :

&} e
AN
F2 3
fpi 3
/%%, s
l!i!ii«‘ii;lii&w\mﬂ.);; §§§§§§§§§§§§§§§ s ettt ovee sover
e)

US 9,448,648 B2

Sheet 101 of 123

Sep. 20, 2016

U.S. Patent

o

e

e e s e e i G G e G s e il e e cmme e e e

47 N , {
UDNBULIOHE
fo g g
. £y Ll 22933 L]
2 R
?(.{\\\.\(\\a!-((t!(.l
N
[
H
§§§€(}§§§§n«§. - .
; a by j
} by i
w A w m ¢ %x m
i Py !
b e con oon sarn oo o ety it vorn, oo sh e o ; d
r . . v et o om0 s00d

VHALDY GOISSUISIELY 4 YRULICY ORGS0

U.S. Patent Sep. 20, 2016 Sheet 102 of 123 US 9,448,648 B2

A

L¥ o o

O o &3

&
o
L

P

&

%
H

i

US 9,448,648 B2

Sheet 103 of 123

Sep. 20, 2016

U.S. Patent

SRR A
PR

I~
<2

A

i

US 9,448,648 B2

Sheet 104 of 123

Sep. 20, 2016

U.S. Patent

Fig. 778

U.S. Patent Sep. 20, 2016 Sheet 105 of 123 US 9,448,648 B2

: 0
B e - g‘“’"
£ w .
8
3 coe.
i
™
N
B
oy
&
A
A >T
£)
s 83 g &
LSRR RN
. P B
tey 2
“H" IRY AR o
SO &
W&oey & =
Lo 0D
s L
B

US 9,448,648 B2

Sheet 106 of 123

Sep. 20, 2016

U.S. Patent

B
o R

§'$
i

&
v g

o
¥

R JRERERTETE:

VM\\\»\\\\\\%

Fig. 79

U.S. Patent Sep. 20, 2016 Sheet 107 of 123 US 9,448,648 B2

Lo

3
LN
by

Fig. 80

Lubard

Rt § {*\? Q9
5 E e H
28 e =
HMEE R4
- ;3

i

&

vttt

US 9,448,648 B2

U.S. Patent Sep. 20, 2016 Sheet 108 of 123

~ RIS 1

138 4
;

Surakn

.
L3

\‘\“
&

s

& >,
NIRRT

o~ \\,‘7
Tag I \\\\\\\\\N\\N\\\\\w

U.S. Patent Sep. 20, 2016 Sheet 109 of 123 US 9,448,648 B2

™
H
QB =N
T4
e
AN o g t\i§
el o0
i N
Ay
&
{

"“‘wr?"%

ot

R
O ®
o

AN

aaaaa iR
bR

Red ainmd e
23 angg sl

,
,
IR |

e
sk
P4

* & t‘f\i Ry
R §'“\ S T 5% e
WA W N o fap §.a e
3 BRS i e
3 2 & NG -y W
R ‘m predy o Sr ‘3“{ §; 3& &
R N 3 N ¥ X 2
— % Sk &:‘ <3 i.g::: ?.}.
- o ~ - "
Nt N avee ST B fn

Ko =

e

US 9,448,648 B2

Sheet 110 of 123

Sep. 20, 2016

U.S. Patent

o Ty 3
£ [b
W £ #3

'

o
Zie

e

Fig. 83A

U.S. Patent Sep. 20, 2016 Sheet 111 of 123 US 9,448,648 B2

e Hlce

WRhera

wilht e R128.8

8 pobis tange

~$128-10

3 128-13

o,
ot
]
s}
i
o
it
P 3
e onre. wnnt onre sonre onre cosbessansl, sonn oss ons. wwons spone ssone son
4
7

US 9,448,648 B2

Sheet 112 of 123

Sep. 20, 2016

U.S. Patent

g D1

BiAis Bumes

]
vy
[
Jon
Re?
O

&

N
<2
d

BIRDEYYY

tots

%

114 S

. \ie:i

et smponser %
AT

RTINS |

el EER

T

W A 2 s
w
wove, ot s oosst sooes ovet oot s O U DRSNS S
e
/ 1S Fp— R Tp—
.\tte...\\\s\ A S \\M a,

»
)
<
(f.«w\
§ LU
=
e
L

»A .
VRIS mawmmmﬁmcﬁ@

U 448

e
a naa AR AR

é
;
|
|
i
|
§

Bt
!
!
{
|
{
i
{
{

e

U.S. Patent Sep. 20, 2016 Sheet 113 of 123 US 9,448,648 B2

e “N“.,W.-h ""\w\ —
e " o Lty o,
Sl Transmii? o

e
app e ~—
\..g:\gm“m.w::;f“ File Farmat 9 \::j;»
m‘“’“‘“*f\\ Y a
g
QTHER

OB TP S AT 4
SH4E1 8142-3 N
i H
s o ‘,.ve"“
¥ { § §

Ganavals

GFF

Canerata ShF

aant AR vewa BaRA Rt aRaR SaRe e Aaaa Yean WeeRt aan an e anan Sean e g

52
¥
at
7 ,,/ "
G
s s oo00 o000

!

Vo osmE
§ \ : >
;

s i e
S o
-
o %,
U, N
PN e wee e eese wees e i\ . .
A e e e e e e e e e e
¥

:
H
i
i
i
i
i
:
H
i
i
P
H
i
H

ek

Transmission format

US 9,448,648 B2

Sheet 114 of 123

Sep. 20, 2016

U.S. Patent

O .y

-~

e

=

42-1

&

B

f:’; <

P

o]

-
™

e

ﬂ«m««“&“\“«~\

US 9,448,648 B2

¥

g

Sheet 115 of 123

B3

T

5

&

Sep. 20, 2016

14

NS

U.S. Patent

-3
e

e ST

A

SECVEVPRPRRRVERVRRPRPE

US 9,448,648 B2

U.S. Patent Sep. 20, 2016 Sheet 116 of 123

S

s

W

“ntoni <
trsrens

s
H
N,

™~ “._.......‘3_:........“..‘-"

SR

L

ST

3R

e §144-G

Trded W

Fig. 88

U.S. Patent

AT

7

riding §

o4
%

LR

ny

shrachad
4

Sep. 20, 2016

e

,..
[
[
7
i
13
L,

Sheet 117 of 123

traatation
270

"
K

Petedvril

BAas

s

e

REE RS

| e d
ol 2

US 9,448,648 B2

H » N X
1S * N B
{ ~ i3 m\\v‘ Ay, H
o I H
SR 1 3 O S SR Y {
t by H NN, o
kS > N N N
L » N - 3
i] B H
ks R T 3 H W e 3 3
L. 4.»‘ ed H SE A N
e, o b AN T
A TR, 3 -~ o

S

e

e,

=

e %’

By ot o]
kit

i

P
.

ietnrd;

e

:
1
4

Stroke o
$

e

*{M\

o &5

& v

= bkl
o

3....

%

US 9,448,648 B2

Sheet 118 of 123

Sep. 20, 2016

U.S. Patent

US 9,448,648 B2

Sheet 119 of 123

Sep. 20, 2016

U.S. Patent

k2

5

¥

o
Fig. 90B

US 9,448,648 B2

Sheet 120 of 123

Sep. 20, 2016

U.S. Patent

T
b

T

o
=Y

o,
“enut

e W A

"E»\’a
A~

gat

b B30

[RSSEENNY

Fig. 90C

US 9,448,648 B2

Sheet 121 of 123

Sep° 20, 2016

U.S. Patent

ADOLLE B
PL} BAUAS O)
(RO BY0NS U
sy BuBusyly ¢

16 By

.\«MWW\WN»MWM\M\M M.w \f\v Mv‘\‘m W

— s, w43 muﬁ“mwrmmhww@ o

AR

Bumusug L v

\u& Q {7 B0

Nnm,mm S Fingy e e

awons wg Buoe

US 9,448,648 B2

A
&
bW
[
3
@
5
&
S
o
S

ureantle meu gy T ; \\ii D

Sheet 122 of 123

TS
et

=
S
a8
Y
&‘
el
X
o
o)
T

¢ BRIy oy

Sep. 20, 2016

U.S. Patent

g _ R - EZYRY U wm&zg AR LR
b e YA NLFG e)
, M (RS 1BUDISEY aﬁ BHADE)
Rl bR T w “ozoze
o _ NOIVADH %
e L wfenfuer “. ‘ ot
85) H .

YR 0¥ @\,

(susliaog 1 1,
;
;
!

3
3
H
3

Bl HBUBE)

3
brsrossdosrsrrs;

8025 POTS ; Y7075
g aih g Msuns)
; LA

m%ﬂ VIR 148 WISPIDOaE RHART)

US 9,448,648 B2

Sheet 123 of 123

Sep. 20, 2016

U.S. Patent

ANasaaana

{pyn \&Nwm
CRIRUALLIBL W o

7

¢6 Bidg

PAHISLL ABIE &\Su KN
Yala’ d s
KxH EAURAGTY N:MMQ w
7 1
4 %

i \.mnm L5 A S R E

.;

H
Y
i
w‘)

.“\m“:i\‘,:?

i
3

{BL00dPd "L AN M
AR IASY. | R e g R

&
RO OB
DAty S ALY §

7 222 R RS

s\}a

:

i
£ 4
x
[}
s

FLRIRABOOB BN0UR
DLBA B UL DBSTEI DUE DEIDADSI N7 18D WU

U $RALLICY B
{N o-E LS

%

US 9,448,648 B2

1

METHOD AND SYSTEM FOR INK DATA
GENERATION, INK DATA RENDERING, INK
DATA MANIPULATION AND INK DATA
COMMUNICATION

BACKGROUND

1. Technical Field

The present invention is directed to methods and systems
for generating, rendering, manipulating and communicating
ink data that reproduces a path of hand-drawn (frechand)
stroke data and renders the path with style.

2. Description of the Related Art

Various handwriting input systems are known, which
allow a user to input hand-drawn (or freehand) data by using
a pen-shaped device. For example, electromagnetic reso-
nance type pen-tablet input systems are known, which allow
input of hand-drawn data including associated pen pressure
and pen tilt data. As further examples, electrostatic type pen
input systems are known, which generate capacitance
between an implement and a (tablet) sensor surface similarly
to how capacitance is created between a finger and the
sensor surface. Still further, input systems that output rela-
tively simple information such as gesture information
derived from a collection of determined positions are also
known.

Typically, hand-drawn data or stroke (path or trace) data
inputted by a pen-shaped implement is usable in a single
drawing application to generate raster data such as pixel data
or image data. A need exists for methods and systems that
permit hand-drawn data or stroke data generated by oper-
ating a variety of types of devices and applications, such as
ink messaging, ink archiving and retrieval applications,
e-mail, photo annotation, remote video conferencing appli-
cations, etc., to be shared amongst various devices. Digital
ink or ink data (hereinafter “ink data”) is proposed to address
such need. Typically raster data such as direct pixel data or
image data is used, which is generated according to the
setting of a particular application used to support a user’s
stroke input operation on an input device. The ink data, on
the other hand, is intermediate data, which exists prior to
rasterization of stroke data and which is in the form of vector
data usable by a variety of applications. Sample ink data
types are described in the following non-patent literature
DOCUMENTS (D1) through (D4):

(D1) W3C, Recommendation 20, September 2011, “Ink
Markup Language (InkML)”
(URL—ttp://www.w3.0rg/TR/2011/REC-InkMIL -

20110920/)

(D2) Microsoft Corporation, et al., “Ink Serialized Format
Specification” 2007
(URL—http//download.microsoft.com/download/0/B/E/

OBESBDD7-E5E8-422A-ABFD-4342ED7AD886/
InkSerializedFormat(ISF)Specification.pdf)

(D3) W3C Working Draft 11, February 2014, “Scalable
Vector Graphics (SVG) 27
(URL—http://www.w3.0rg/TR/SVG2/); W3C Recom-

mendation, 16 Aug. 2011, “Scalable Vector Graphics
(SVG) 1.1 (Second Edition)” (URL—http:/
www.w3.0org/TR/2011/REC-SVG11-201110816/)

(D4) W3C, “HTMLS A vocabulary and associated APIs for
HTML and XHTML W3C Recommendation 28 Oct.
2014~
(URL—http://www.w3.org/TR/html5/)

(DS5) Slate Corporation, et al., “JOT—A Specification for an
Ink Storage and Interchange Format™, Version 1.0, Sep-
tember 1996

10

15

20

25

30

35

40

45

50

55

60

65

2

Briefly, the InkML (D1) and ISF (D2) data structures
represent stroke data inputted by a pen-type device in a
manner sharable amongst different applications. SVG (D3)
provides a Web standard that permits drawing of a path
defined by user-input control points as vector data, regard-
less of what type of pen device is used as an input device.

The ink data described in (D1) through (D4) all define
geometric information needed to reproduce a trace (or path)
formed by movement of a pen or a finger. Such information
is herein collectively called a “stroke object.”

(D1) describes the ink data that is currently most widely
known. (D1) defines an object called “trace” as follows:
“<trace> is the basic element used to record the trajectory of
a pen as the user writes digital ink.”

For example,

<ink><trace>x1 y1, x2 y2, . . . xn yn</trace></ink>

describes a path of a stroke object that extends from a
point x1, y1 to a point xn, yn.

(D2) describes the ink data generated by an ink function
usable on Microsoft™ Windows™ applications. (D2)
defines an object called “stroke” as follows: “As described
earlier in the simple example, Strokes are the most funda-
mental and important property in ISF. Strokes contain the
packet data that make up the individual points in a stroke and
potentially other per-stroke properties as well.”

(D3) describes a standard of a vector data supported by
various browsers and drawing software, though (D3) does
not assume pen input. (D3) defines information called
“path” as follows: “Paths represent the outline of a shape
which can be filled, stroked, used as a clipping path or any
combination of the three.” In SVG (D3), a path object is
interpolated based on interpolation curves such as the Poly-
Bezier (Cubic Bezier, Quadratic Bezier) Curves well known
in the art.

For example,

<path stroke="green” stroke-width="5" d=“M100,200
100,100 300,100 300,2007/>

describes a path starting from a beginning control point
(100,200) to an ending control point (300,200), using two
control points (100,100) and (300,100), and having a path
width of “5” and color green.

(D4) defines a class called “Canvas Path,” which can
utilize, for example, a Quadratic Curve command and a
Bezier Curve command to generate interpolated curves.

In the present description, the term “stroke object” is used
as a general term that encompasses the “trace,” “stroke,”
“path” and “Canvas Path” of (D1) through (D4) above.

A stroke object is vector data information whose data
structure includes a set of point or control point coordinates
that are used collectively to reproduce a trace (or a path)
formed by movement of a pen or a finger. According to
various embodiments, the present invention offers methods
and systems for generating, manipulating (e.g., slicing),
rendering and communicating ink data that represent hand-
drawn (freehand) stroke data on and between various appli-
cations. Each of the embodiments provide technical solu-
tions that were not available in the prior art of (D1)-(D5)
above. It should be noted that, while the following descrip-
tion is organized to disclose generally four (4) embodiments
of'the invention, various aspects of the embodiments may be
combined, supplemented, interchanged, switched or modi-
fied among and between the embodiments to produce further
embodiments, as will be apparent to those skilled in the art.
For example, various methods and systems of each embodi-
ment may employ the definition of ink data, as well as the
methods of generating, reproducing, drawing (rendering),
manipulating and communicating the ink data and the ink

US 9,448,648 B2

3

data structures (data objects and data formats) as described
in connection with one or more of the other embodiments
disclosed herein.

Each of the following embodiments 1-4, in various
examples, addresses one or more of the aspects described
below.

[ASPECT ONE] Introduction of manipulation objects
that partially or wholly transform pre-existing stroke objects
in several computers.

According to one aspect, the invention is directed to
providing manipulation objects. The previously known ink
data models described above include semantics and syntax
usable only for processing static stroke data, to process one
stroke object as one aggregate. Thus, the previously known
ink data models are not capable of selecting or slicing a
portion of a stroke object. Also, the previously known ink
data models allow manipulation of a stroke object on one
processor, and are incapable of allowing multiple processors
to share the manipulation (e.g., editing) operation executed
on the stroke object in real time.

FIG. 91 illustrates an example of a manipulation object
270, a “slice” object, according to an embodiment of the
present invention. A slice object 274 capable of manipulat-
ing (slicing) a portion of a stroke object is generated and
transmitted. In the illustrated example, a portion of one
stroke object 9101 on one computer is sliced, and a manipu-
lation data 9103 indicative of the sliced portion is shared by
other computers such that the stroke object 9101 on the other
computers too can be manipulated in the same manner.
Modification or manipulation (e.g., slicing) of a portion of a
stroke object will be described in detail below in the first and
fourth embodiments of the present invention. Sharing of one
manipulation object 270 amongst multiple computers to
share the edited, up-to-date status of the ink data among
them will be described in detail below in the first, second and
fourth embodiments of the present invention.

[ASPECT TWO] Abstracting the definition of pen event
input information to absorb device differences (and making
SVG more pen-input-oriented to improve SVG’s pent-input
expression capability).

According to a further aspect, the invention is directed to
making hand-drawn input data abstract so as to absorb any
differences that exist among different input devices. This is
achieved by abstracting pre-existing input attributes of
strokes, such as pen pressure and pen angle information, to
higher-level-concept attributes defined in a novel model. In
general, the information that needs to be reproduced based
on hand-drawn input data is not “how” the hand-drawn data
was inputted, such as at what angle a pen (stylus) was held,
at what point in time what coordinate was obtained, and how
much pen pressure was applied, etc. Instead, the information
that needs to be captured is vector data that can reproduce
the “result” of such pen (style) operation or drawing opera-
tion that was carried out with certain pen pressure, pen
speed, etc.

Currently various hand-drawn input devices exist, ranging
from a high-performance input device (e.g., 9202C in FIG.
92) capable of obtaining pen pressure, pen angle, pen
rotational angle data, etc., to a widely used electrostatic
tablet or other simpler input devices capable of receiving
input by a finger but not capable of obtaining pen pressure,
pen tilt angle, etc. (e.g., 9202A in FIG. 92). Thus, it is
desirable to convert any device-dependent attributes of
hand-drawn input data (shown as “Device dependent Pen
Event Data” of 9202A-9202C in FIG. 92, for example) to
device-independent abstracted vector data (9204 in FIG. 92),
which can be used to reproduce the “result” of a pen event.

20

25

35

40

45

50

55

60

65

4

The ink data defined in such an abstracted form may be
organized in vector data, to ultimately produce raster data
(image data) as shown in 9208 in FIG. 92. SVGI11 (D3)
discussed above defines vector data, and is shown as 9206
in FIG. 92. SVG11 (D3) does not permit varying or adjust-
ing the stroke width, color and transparency (opacity) and,
as a result, is not particularly suited for reproducing the
“result” of a pen event. Also, SVG includes data other than
the stroke object path coordinates data, such as control
points used to generate Bezier curves, and thus are not suited
for use with various applications 9220 other than specialized
drawing applications.

In addition to producing raster image data (9208, FIG.
92), it is also desirable to organize the ink data in a more
abstracted form in vector, for use in a signature verification
application, in an annotation application, etc. In this regard,
abstraction is preferably not too image-oriented, but should
result in abstract attributes that may be used to define ink
data in both raster form and in vector form. Abstracting
device-dependent pen event data 9202 of Type 1 (including
pen pressure data) and of Type 2 (not including pen pressure
data) to the generalized ink data, which is the intermediate
data 9204 in FIG. 92, will be described in detail below in the
first and third embodiments of the present invention.

[ASPECT THREE] Extending the life cycle of an ink data
ecosystem by separating a language(information model)
from a format.

For example, contents of raster data such as digital photos
are often used not only by a single service or on a single
application, but by multiple services and applications and
are shared by or transferred amongst all in a chained manner
on a particular “ecosystem” (though they may be processed
in various formats such as JPEG, GIF, TIFF, etc.). These
various formats may be used because raster data includes a
common information model which conceptually describes a
collection of pixel values.

According to a still further aspect, the invention is
directed to facilitating ink data exchange and transfer
between different formats, based on adoption of the common
language (stroke language (SL)). The stroke language (SL)
is an information model that defines semantics of the ink
data of the present invention, as opposed to the formats of
the ink data. That is, the ink data thus defined by abstracted
attributes may be processed into different raster image
formats (PNG, JPEG, etc.), exchanged between different
vector graphics formats (SVG, InkML, HTMLS, etc.), or
produced in different stream formats (ISF, InkML, etc.) that
define stroke structures. FIG. 93 conceptually describes this
aspect of the invention. To add flexibility to output format
types as well as input format types, and to accommodate a
variety of output and input format types, the common
language (or the information model that defines the common
language) preferably resides in the intermediary between a
device driver level that generates the language and an output
level at which the generated language is outputted into a file,
packets, etc. In particular, the ink data processing section
100 according to various embodiments of the invention
includes an ink data generation section 120 that generates
ink data based on the abstracted language (stroke language),
and an ink data formatting section 140 that handles input and
output of the ink data in various formats, as two separate
components. Since the function of ink data generation and
the function of ink data formatting for input/output purposes
are separated, the ink data processing section 100 is suited
to be used as a building block of the ink data ecosystem to

US 9,448,648 B2

5

spread use of the ink data amongst various devices. This
aspect of the invention will be described in detail below in
the fourth embodiment.

These three aspects of the invention as described in FIGS.
91-93 will be discussed again after the description of the first
through fourth embodiments of the present invention below.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a diagram illustrating an overall system in which
ink data are generated and utilized, according to various
embodiments of the present invention.

FIG. 2 is an entity relationship diagram of an ink data
structure, suitable for use in embodiments of the present
invention.

FIG. 3A illustrates a stroke object, which is defined by
multiple point objects.

FIGS. 3B and 3C illustrate two rendering (drawing)
results of the stroke object of FIG. 3A according to two
different drawing style objects.

FIG. 4A illustrates operation of a “select” manipulation
object used to select and transform (e.g., rotate) a stroke
object.

FIG. 4B illustrates operation of a “slicing” manipulation
object used to slice a stroke object.

FIG. 5 is a functional block diagram of an ink data
processing device according to first embodiments of the
present invention.

FIG. 6 is a functional block diagram of an ink data
processing section (100) of the ink data processing device of
FIG. 5 according to first embodiments of the present inven-
tion.

FIG. 7 is a functional block diagram of a stroke object
handling section (122) of the ink data processing section of
FIG. 6 according to first embodiments of the present inven-
tion.

FIG. 8 illustrates the processing performed at points “A”
through “D” in the stroke object handling section of FIG. 7.

FIG. 9 is a flow chart illustrating a sample routine
performed by the ink data processing section of FIG. 6.

FIG. 10 illustrates a sample stroke file format (SFF) file
written in the Interface Definition Language (IDL), which
may be outputted at point “E” of the ink data processing
device of FIG. 5.

FIG. 11 illustrates a sample stroke object file in the stroke
file format (SFF), which may be outputted at point “E” of the
ink data processing device of FIG. 5.

FIG. 12 illustrates three messages in a stroke message
format (SMF), which may be outputted at point “F” of the
ink data processing device of FIG. 5, and one packet
outputted at point “G” of the ink data processing device of
FIG. 5.

FIG. 13A illustrates a stroke object subjected to the
Catmull-Rom Curve interpolation operation, which may be
outputted at point “D” of the ink data processing device of
FIG. 5 to be inputted to a graphic processing section (300)
or to an ink data formatting section (140).

FIG. 13B illustrates a rendering (display) result of the
stroke object of FIG. 13A, outputted from the graphic
processing section (300) at point “H” of the ink data
processing device of FIG. 5.

FIG. 14 is a flow chart of a slicing operation applied to a
stroke object according to first embodiments of the present
invention.

10

20

25

30

35

40

45

50

55

60

65

6

FIG. 15A illustrates a process of determining a single
(mid) intersecting point (P_intersect_Mid) between two
strokes, performed in step S1409 of FIG. 14.

FIG. 15B illustrates a process of deriving two (edge)
intersecting points (P_intersect_[. and P_intersect_R)
between a slicing stroke object having a width and a
pre-existing stroke object, performed in step S1413 of FIG.
14.

FIG. 16A illustrates a first one of two slices resulting from
slicing a stroke object, derived in step S1415 of FIG. 14.

FIG. 16B illustrates a data structure of parameters that
define the first slice of FIG. 16A.

FIG. 16C illustrates a rendered path of the newly-created
first stroke object.

FIG. 17A illustrates a second one of the two slices
resulting from slicing the stroke object, derived in step
S1415 of FIG. 14.

FIG. 17B illustrates a data structure of parameters that
define the second slice of FIG. 17A.

FIG. 17C illustrates a rendered path of the newly-created
second stroke object.

FIG. 18A illustrates a process of deriving a new end point
for the first slice of FIG. 16 A and a process of deriving a new
start point for the second slice of FIG. 17A.

FIG. 18B illustrates a data structure of parameters that
define a hole segment object, according to first embodiments
of the present invention.

FIG. 19 illustrates a sample file in the stroke file format
(SFF) containing two newly-created stroke objects repre-
senting two slices resulting from slicing a stroke object.

FIG. 20 is a detailed flow chart of the ink data transmis-
sion processing performed in step S1422 of FIG. 14.

FIGS. 21A-21D illustrate different transmission message
types (Type A, Type B, Type C and Type D) that may be used
to transmit ink data in connection with a slicing operation.

FIG. 22 is a functional block diagram of an ink data
reception device configured to remotely receive ink data via
a network according to first embodiments of the present
invention.

FIG. 23 is a flow chart illustrating a reception processing
of a manipulation (slicing) object at the reception side
according to first embodiments of the present invention.

FIGS. 24A and 24B illustrate a technical problem asso-
ciated with the prior art.

FIG. 25 is an entity relationship diagram of an ink data
structure, suitable for use in second embodiments of the
present invention.

FIG. 26 is an overall communications system diagram
suitable for use in second embodiments.

FIG. 27 illustrates a transmission device (10-1) of the
communications system of FIG. 26.

FIG. 28 illustrates a sample recording format, suited for
storing an updated state of a common drawing area (canvas),
in second embodiments of the present invention.

FIG. 29 illustrates a relay server (10-2) of the communi-
cations system of FIG. 26.

FIGS. 30A-30C illustrate communications parameters,
drawing parameters, and user policy parameters, respec-
tively, which collectively describe or define a transmission
device’s communications and graphics environment.

FIG. 31 illustrates a reception device (10-3) of the com-
munications system of FIG. 26.

FIG. 32 is a sequence diagram illustrating ink data com-
munications between the transmission device (10-1), relay
server (10-2), and reception device (10-3), according to
second embodiments of the invention.

US 9,448,648 B2

7

FIG. 33 is a flow chart of a sample process of finding a
defined unit T for transmitting ink data.

FIG. 34 illustrates a sample transmission format of com-
munications packets and messages, suited for transmitting
(communicating) ink data amongst multiple devices, accord-
ing to second embodiments of the present invention.

FIG. 35A illustrates a communications packet used in a
communications protocol that includes a data retransmission
scheme, and FIG. 35B illustrates a communications packet
used in a communications protocol that does not include a
data retransmission mechanism.

FIG. 36A is a sequence diagram of a sample data retrans-
mission process which uses sequence ID, suitable for use in
a communications protocol that does not include a data
retransmission mechanism.

FIG. 36B is a sequence diagram of a data transmission
process, suitable for use in a communications protocol that
does not include a data retransmission mechanism, in which
data retransmission is not performed.

FIGS. 36C-36E illustrate methods for calculating a con-
trol position of a message.

FIGS. 36F and 36G illustrate an interpolation (error
concealment) processing, which uses the control position
calculated in FIGS. 36C-36E, for use in the sequence of FIG.
36B.

FIG. 37 is a sequence diagram illustrating ink data com-
munications, in which a request to update a common draw-
ing area issued by a transmission device is rejected by a
relay server.

FIG. 38 is a first modification example of the sequence
diagram of FIG. 32, in which a relay server receives frag-
mented data of a stroke object from a transmission device
and combines all of the fragmented data per stroke object to
be relayed to a reception device.

FIG. 39A is a data transmission format for use in the first
modification example of FIG. 38, in which all of the ink data
for one stroke object are combined and included.

FIG. 39B illustrates a sample data transmission format of
DATA_INK_ALLOS_REQ, which is a message that
requests the stroke object data of an entire stroke when the
stroke ID is known.

FIG. 40 is a second modification example of the sequence
diagram of FIG. 32, in which a stroke object is transmitted
“as is” (i.e., non-fragmented) from a transmission device via
a relay server to a reception device.

FIG. 41 is a third modification example of the sequence
diagram of FIG. 32, in which a relay server receives a stroke
object from a transmission device and fragments the
received stroke object into multiple pieces of fragmented
data to be relayed to a reception device.

FIG. 42 is a diagram illustrating the concept of a user-
specific stroke starting point relative to an origin of a
common drawing area.

FIGS. 43 and 44 illustrate a second embodiment of ink
data transmission in a unit of semantics, which is greater
than a unit of stroke.

FIG. 45 illustrates data input/output at an ink data pro-
cessing section and in a generating method on one hand, and
at an ink data processing section and in a reproducing
method on the other hand, according to third embodiments
of the present invention.

FIGS. 46A-46C illustrate three configuration examples of
ink data generating methods according to third embodiments
of the present invention.

FIGS. 47A and 478 illustrate two configuration examples
of ink data reproducing methods according to third embodi-
ments of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 48A is an entity relationship diagram of an ink data
structure, pursuant to an ink data model (Stroke Language
(SL)) according to third embodiments of the present inven-
tion.

FIG. 48B is a detailed entity relationship diagram of the
ink data structure of FIG. 48A.

FIG. 48C is a graphical representation of a stroke object.

FIG. 48D is a diagram that explains a Canvas object.

FIG. 48E is a diagram that explains a Metadata object.

FIG. 48F is a diagram illustrating rendition results of three
different drawing style objects as seen on a screen.

FIG. 48G is a diagram that explains operation of a
manipulation (slice) object.

FIG. 48H is a diagram that explains operation of a
manipulation (erase) object.

FIG. 481 is a diagram that explains operation of a manipu-
lation (select and transform) object as applied to a pre-
existing stroke object.

FIGS. 48]-48L illustrate syntax of an ink data structure
arranged in a stroke file format (SFF) according to third
embodiments of the present invention.

FIG. 49 is a functional block diagram of an ink data
processing section according to third embodiments of the
present invention.

FIG. 50A is a flow diagram illustrating a process executed
in a “ink data generation section” of FIG. 49 to output radius
and alpha information as attributes of a point object, accord-
ing to third embodiments of the present invention.

FIG. 50B illustrates sample GUI of an application or an
operating system that may be used to define context infor-
mation regarding pen event data.

FIG. 51 is a diagram illustrating the process of deriving
velocity in step S1205 of FIG. 50, according to third
embodiments of the present invention.

FIG. 52 is a flow diagram illustrating the process of
deriving a radius in step S1207 of FIG. 50, according to third
embodiments of the present invention.

FIG. 53 is a diagram illustrating the definition of “phase”
of a stroke as used in step S1207_01 of FIG. 52, according
to third embodiments of the present invention.

FIG. 54 is a graph that illustrates three functions for
deriving a radius from a parameter (velocity), as used in
steps S1207_05 and S1207_07 of FIG. 52, according to third
embodiments of the present invention.

FIG. 55 is a flow diagram illustrating the process of
deriving alpha indicative of transparency (or opacity) in step
S1209 of FIG. 50, according to third embodiments of the
present invention.

FIG. 56 is a graph that illustrates two functions for
deriving alpha (transparency/opacity) from a parameter (ve-
locity), as used in steps S1209_05 and 1209_07 of FIG. 55,
according to third embodiments of the present invention.

FIG. 57 is a flow diagram illustrating a process of
formatting radius and alpha values, as well as X and Y
coordinate data, into an ink data format (data structure),
according to third embodiments of the present invention.

FIG. 58 illustrates an implementation example of steps
S1411 and S1413 of FIG. 57, according to third embodi-
ments of the present invention.

FIG. 59 illustrates conversion of floating data type to
integer data type used in steps S1411 and S1413 of FIG. 57,
according to third embodiments of the present invention.

FIG. 60 illustrates the increased efficiency of compression
resulting from the data type conversion of FIG. 59, accord-
ing to third embodiments of the present invention.

FIG. 61 is a flow diagram illustrating a process, which
may be executed in an “ink data formatting section” of FIG.

US 9,448,648 B2

9

49 to compress the generated ink data, according to third
embodiments of the present invention.

FIG. 62 is a flow diagram illustrating a process executed
in an “ink data generation section” of FIG. 49 to output
radius information as an ink data attribute (alternatively to
FIG. 52), according to third embodiments of the present
invention.

FIG. 63 is a flow diagram illustrating a process executed
in a “ink data generation section” of FIG. 49 to output alpha
information as an ink data attribute (alternatively to FIG.
55), according to third embodiments of the present inven-
tion.

FIG. 64 is a diagram illustrating a relationship between an
ink data processing section and various applications, accord-
ing to third embodiments of the present invention.

FIG. 65 is a flow diagram illustrating an ink data repro-
ducing process to extract (reproduce) radius and alpha
information, as well as X and Y coordinate data, in ink data
and outputting the extracted information and data in
response to a request from a drawing application, according
to third embodiments of the present invention.

FIG. 66 illustrates an implementation example of steps
S2011 and S2013 of FIG. 65, according to third embodi-
ments of the present invention.

FIG. 67 is a flow diagram illustrating a drawing process
that applies a selected drawing style object to a stroke object
to be drawn, according to third embodiments of the present
invention.

FIG. 68 illustrates drawing rendering examples resulting
from input of the ink data generated based on the attenuate
(damping) function of FIG. 54, according to third embodi-
ments of the present invention.

FIG. 69 illustrates drawing rendering examples resulting
from input of the ink data generated based on the power
function of FIG. 56, according to third embodiments of the
present invention.

FIG. 70 illustrates drawing rendering examples resulting
from input of the ink data generated based on both of the
attenuate function of FIG. 54 and the power function of FIG.
56, according to third embodiments of the present invention.

FIG. 71 illustrates drawing rendering examples, which
show effects of other functions (sigmoid and periodic func-
tions) of FIG. 54, according to third embodiments of the
present invention.

FIG. 72 illustrates drawing rendering examples, which
show effects of using special values as the radii of the
beginning and ending points of a stroke to be drawn,
according to third embodiments of the present invention.

FIG. 73 is a diagram illustrating an overall system in
which ink data are utilized, according to fourth embodi-
ments of the present invention.

FIG. 74 is a functional block diagram of an ink data
processing section according to fourth embodiments of the
present invention.

FIG. 75 is a more detailed functional block diagram of the
ink data processing section of FIG. 74, according to fourth
embodiments of the invention.

FIG. 76 is a functional block diagram of a stroke object
handling section (122) of FIG. 75.

FIGS. 77A and 77B are flowcharts illustrating a method
of generating a stroke object.

FIG. 78 is a functional block diagram of a metadata object
handling section (124) of FIG. 75.

FIG. 79 is a flowchart illustrating a method of generating
a metadata object.

FIG. 80 is a functional block diagram of a rendering
(drawing style) object handling section (126) of FIG. 75.

10

15

20

25

30

35

40

45

50

55

60

65

10

FIG. 81 is a flowchart illustrating a method of deriving a
(drawing) style object and its cascading properties.

FIG. 82 is a functional block diagram of a manipulation
object handling section (128) of FIG. 75.

FIGS. 83A and 83B are flowcharts illustrating a method
of deriving a manipulation object, such as a slice object.

FIG. 84 is a functional block diagram of an ink data ink
data formatting section (140) of FIG. 75.

FIG. 85 is a flowchart illustrating a process performed in
the ink data ink data formatting section of FIG. 84.

FIG. 86 is a flowchart illustrating a method of outputting
a stroke file format (SFF) data.

FIG. 87 is a flowchart illustrating a method of outputting
JPEG format data.

FIG. 88 is a flowchart illustrating a method of outputting
a stroke messaging format (SMF) data.

FIG. 89 is a functional block diagram that explains input
processing of data (SFF/JPEG and SMF) that have been
outputted in various file formats and messaging formats.

FIG. 90A is a flowchart of processing to interpret and
reproduce an object arranged in an SFF file.

FIG. 90B is a flowchart of processing to interpret and
reproduce an object based on input in InkML.

FIG. 90C is a flowchart illustrating a process of receiving
and executing a manipulation (slice) object in SMF.

FIG. 91 is a diagram explaining the effect of using an ink
data processing device (101) of FIG. 75 to address ASPECT
ONE.

FIG. 92 is a diagram explaining the effect of using an ink
data processing device (101) of FIG. 75 to address ASPECT
TWO.

FIG. 93 is a diagram explaining the effect of using an ink
data processing device (101) of FIG. 75 to address ASPECT
THREE.

DETAILED DESCRIPTION

As used herein, and unless otherwise specifically defined
in a particular context to be applicable only to a particular
embodiment, the following terms have the following mean-
ing throughout the various embodiments described herein.

“Pen event data” (INPUT1) means data inputted based on
a user’s hand drawing motion. Pen event data may be the
raw data as inputted by a given input device, or data that has
been processed from the raw data. While all pen event data
are expected to have at least the positional information (e.g.,
XY coordinates) of each stroke drawn by a user, pen event
data is device-dependent and includes attributes (e.g., pen
pressure data, pen rotation or tilt angle data, etc.) that are
specific to each type of input device. For example, pen event
data received from input devices capable of detecting pen
pressure is different from pen event data received from input
devices incapable of detecting pen pressure.

“Ink data” (200) means a collection of objects that are
derived from pen event data. Ink data 200 captures paths
(strokes) formed based on pen event data and is in the form
of vector data, which is a type of intermediate data that
describes properties (color, pen type, etc.) of each path. Ink
data 200 is device-independent in that it can be shared by
those devices that support pen pressure and/or pen rotation/
tilt angle attributes and by those devices that do not support
these attributes. Ink data 200 according to embodiments of
the invention includes stroke objects 210, metadata objects
250, drawing style objects 230, and manipulation objects
270. Ink data 200 will be described in detail below in FIGS.
2, 3A-4B, 25, 48A-48], etc.

US 9,448,648 B2

11

“Stroke object” (210) is one type of object or data
included in the ink data 200. The “stroke,” “path,” “trace”
and “CanvasPath” described in (D1)-(D4) above are all
stroke objects 210. A stroke object 210 describes a shape of
a path (stroke) obtained by a user operation of an input
device.

“Metadata object” (250) is one type of object included in
the ink data 200, and include non-drawing related informa-
tion that describes a stroke object 210, such as authorship,
pen ID, locally obtained date and time information, location
information obtained by GPS, etc.

“Drawing style object” (230) is one type of object
included in the ink data 200, and includes information
necessary to control the shape (stroke width, stroke style/
pattern) and color of a stroke object 210 when rendered
(drawn, expressed, rasterized) on a display. In short, the
drawing style object controls rendering (drawing) of a stroke
object 210.

“Manipulation object” (270) is one type of object
included in the ink data 200 and executes a manipulative/
modification operation (e.g., slicing operation) on the whole
of, or a part of, each of one or more pre-existing stroke
objects 210. Application of a manipulation object 270 to a
part of a stroke object will be described in detail below in the
first embodiment.

“Stroke language (SL)” is an information model that
defines attributes and meanings of various objects that form
the ink data 200.

“Stroke file format (SFF)” is a type of recording format,
in which the ink data 200 to be outputted are serialized in a
recording format. Details of SFF will be described below in
reference to FIGS. 10, 11, 19, 28, 48], 48K, 481, 57, 65 and
86.

“Recording format™” means a format suitable for persisting
ink data 200, such as the SFF format and the SVG format.
Ink data 200 in a recording format can be recorded in storage
(HDD, network storage, etc.) as a file or database and its
serialized data stream can be retrieved and desialized there-
from.

“Stroke message format (SMF)” is one type of a message
transmission format included in a transmission packet or
frame, for use in transmitting the ink data 200 using a
defined transmission protocol. Details of SMF will be
described below in reference to FIGS. 12, 21, 34, 35A, 35B,
39A, 39B and 88.

“Transmission format” means a message format suitable
for transmitting (messaging) ink data 200 over a network,
such as the SMF format.

“Image data” means rasterized images, such as GIF and
JPEG images, containing pixel data, which can be produced
(drawn) based on ink data 200. Image-format data which is
not intermediate cannot be reverted back to ink data 200.

The following terms are used to describe several main
structures and components used to process the ink data 200,
as shown in FIG. 5 for example.

“Ink data processing section” (100) means a processor
that generates, stores, and processes the ink data 200. In the
description, the ink data processing section that is used to
generate the ink data 200, based on pen event data, and to
arrange the ink data 200 in a defined format may be
indicated by a reference numeral 1007, while the ink data
processing section that is used to reproduce the ink data 200,
which has been generated and arranged in a defined format,
within a computer may be indicated by a reference numeral
100R. Details of the ink data processing section 100 will be
described below in reference to FIGS. 5 and 75, and addi-
tionally in reference to FIGS. 6, 22, 27, 31, 49 and 74. The

10

15

20

25

30

35

40

45

50

55

60

65

12

ink data processing section 100 generally inputs/includes/
receives three types of information: 1) PenEvent (type input)
information (“INPUT 17), 2) Context information (“INPUT
2”), and 3) Manipulation information (“INPUT 37).

“Ink data generation section” (120) produces the ink data
200 or extracts the ink data 200. In the description, the ink
data generation section that generates the ink data 200 based
on input signal received from an input sensor may be
indicated by a reference numeral 1207, and the ink data
generation section that extracts the already-generated ink
data 200 and restores it in memory may be indicated by a
reference numeral 120R.

“Ink data formatting section” (140) processes the ink data
200 arranged in the recording format or in the transport
format for the purpose of input and output. In the descrip-
tion, the ink data formatting section that outputs the ink data
200 in a defined format may be indicated by a reference
numeral 1407, and the ink data formatting section that inputs
the ink data 200 in a defined format may be indicated by a
reference numeral 140R.

First Embodiment

A first embodiment of the present invention is directed to
generating, rendering, manipulating (e.g., slicing) and com-
municating stroke objects 210 that form ink data 200. In
particular, manipulation of a portion of a stroke object 210,
as described above in reference to FIG. 91, as well as sharing
(transmission) of the manipulation operation amongst mul-
tiple processors will be described.

Background of the First Embodiment

The stroke objects described in (D1) through (D4) include
points or control points, which are necessary for generating
interpolated curves or paths by using a predetermined inter-
polation curve algorithm.

(D1) and (D2) do not specify any particular interpolation
curve algorithm, i.e., any suitable interpolation curve algo-
rithm can be used.

(D3) and (D4) use the Poly-Bezier (Cubic Bezier) Curves.
In the Poly-Bezier Curve, the start point Pi and the end point
Pi+1 of single curve segment (path segment) are used as
control points. In addition, at least one more control point is
required to define a curvature of the curve segment between
point Pi and point Pi+1 (the start point and the end point),
wherein the control point is different from either Pi or Pi+1
and is not on the curve that includes the curve segment (i.e.,
outside the curve). For example, the Cubic Bezier Curve
requires two control points located outside a curve to define
a curve segment.

For example, XML notation <stroke-width="5" d="M
100, 200 C100, 100 300,100 300,200”/>used for the Cubic
Bezier Curve means:

Start point of (100, 200) is used as a control point;

End point (300, 200) is used as another control point; and

Two more control points (100, 100) and (300, 100) are
used to define a curve segment (between the start point and
the end point but outside the curve segment).

Recently the W3C SVG Working Group responsible for
SVG (D3) above has been discussing possible use of the
Catmull-Rom Curve to interpolate curves. Unlike the Poly-
Bezier Curve, the Catmull-Rom Curve does not have control
points that are outside the curve (i.e., not on the curve). The
Catmull-Rom Curve defines each curve segment with four
control points: a start point (Pi), an end point (Pi+1), a point
“before” the start point (Pi-1), and a point “after” the end
point (Pi+2). All of the control points are on the curve. In
other words, the Catmull-Rom Curve passes through all of
its control points. (Though, because each curve segment

US 9,448,648 B2

13

requires two control points “before” and “after” the curve
segment, the curve segments at the two extreme ends of a
stroke object are undefined.)

Summary of the First Embodiment

FIGS. 24A and 24B illustrate one technical problem
encountered in the ink data definition in the prior art D1 to
D5. FIG. 24A illustrates a curve 2401S represented by a
stroke object, to which a slicing operation 2403 is applied.
The stroke object representing the curve 2401S includes a
set of point coordinates (pl~pl0) inputted via an input
sensor.

In FIG. 24 A, the slicing operation 2403 is applied to slice
a curve segment of the stroke object between point coordi-
nates p5 and p6 along a division line that passes through a
cross-point 2405. FIG. 24B illustrates two segmented curves
2411 S1 and 2415 S2, which result from the slicing opera-
tion 2403. The curve 2411 S1 includes point coordinates pl
through pS5, and the curve 2415 S2 includes point coordi-
nates p6 through p10. As shown, the segmented curve 2411
S1 displayed as a solid line ends at the point coordinate p5
and, thus, is shorter than the actual segmented curve that
extends to the cross-point 2405. Similarly, the segmented
curve 2415 S2 displayed as a solid line starts at the point
coordinate p6 and is shorter than the actual segmented curve
that starts at the cross-point 2405. In FIG. 24B, partial curve
segments 2413 shown in broken line indicate those segments
of the curve that are lost due to the slicing operation 2403.

It is possible to add a new control point at the cross-point
2405 and further control points to define the newly-created
partial curve segments 2413 between p5 and the cross-point
2405 and between the cross-point 2405 and p6. Calculating
the positions of new control points to represent the precise
shape of the partial curve segments 2413 to an end point
2405 is computationally intensive and is no easy task. For
example, when an interpolation curve such as the Cubic
Bezier Curve is used, two control points outside the curve
(or path) need to be calculated to define each new segment.
When the Catmull-Rom Curve is used, two control points
along the curve need to be calculated (or recalculated) to
define each new segment, which will lead to cascade recal-
culation of all previous control points in order to maintain
the actual curvature. Both types of calculation are highly
complex and too time-consuming to support real-time
implementation of a slicing operation in a graphics or
drawing application.

A need exists for a method and system that allow a user
to slice a stroke object forming ink data, wherein each of the
two slices resulting from the slicing operation represents the
actual segmented curve sliced from the original stroke
object. Preferably the method and system do not require
calculating new positions of control points used for inter-
polating curves because such calculation is complex and
often too computationally intensive to support real-time
application.

According to one aspect, the present invention provides
methods and systems for generating, drawing, manipulating
(e.g., slicing), and communicating ink data including stroke
objects 210, wherein the stroke object 210 includes or is
associated with range information that defines a particular
portion of the stroke object 210 to be rendered (displayed).
When the range information indicates full display, the stroke
object 210 is displayed in its entirety, and when the range
information indicates partial display, one or both ends of the
stroke object 210 is partially designated to be not displayed.
When a slicing operation is applied to an original stroke
object 210 to produce two new stroke objects 210, the first
new stroke object 210 is associated with range information

10

15

20

25

30

35

40

45

50

55

60

65

14

that designates a new “end” point at which rasterizing (or
rendering or consequently displaying) of the first new stroke
ends. Correspondingly, the second new stroke object 210 is
associated with range information that designates a new
“start” point from which display of the second new stroke
starts. Both the first and second new stroke objects 210
retain the same structure and the same control points (albeit
partially) as the original stroke object and, thus, display of
the first and second new stroke objects 210 precisely follows
the shape of the original stroke object 210 and, also, it is not
necessary to calculate new control points.

According to another aspect, methods and systems are
provided that output a stroke object 210 to form ink data
200. The stroke object includes a plurality of point objects,
which represent a plurality of coordinate positions. At least
some of the point objects serve as control points used to
generate interpolated curve segments, which together form
a path of the stroke object 210. The stroke object 210 further
includes range information that defines a start point in a
starting curve segment at which display of the stroke object
210 starts, and an end point in an ending curve segment at
which display of the stroke object 210 ends. When an
original stroke object 210 is sliced to generate two new
stroke objects 210, each of the two new stroke objects 210
includes a partial set of the point objects duplicated from the
original stroke object 210 as well as its own range informa-
tion, i.e., parameters indicating its own start point and its
own end point.

According to another aspect, methods and systems are
provided that draw (render on a display) the ink data
structured as above, wherein each stroke object 210 includes
a plurality of point objects and range information. At least
some of the point objects are control points used to generate
interpolated curve segments. The methods and systems draw
each stroke object 210 on a display by interpolating curve
segments based on the control points to generate a path of
the stroke object 210 and by displaying a portion of the
stroke object 210 designated by the range information. In
other words the methods and systems start to display the
stroke object 210 at a start point indicated in the range
information and stop displaying the stroke object 210 at an
end point indicated in the range information.

According to a further aspect, methods and systems are
provided that allow a user to slice a stroke object 210 of the
ink data structured as above. When a user performs a slicing
operation on a stroke object 210, the methods and systems
calculate the position of a cross-point between the slicing
path and the stroke object 210. (See 2405 in FIG. 24A). The
methods and systems generate two new stroke objects 210
resulting from the slicing operation: a first stroke object 210
and a second stroke object 210. The first stroke object 210
includes a first set of point objects and first range informa-
tion that indicates a display start point and a display end
point, wherein the display end point is derived from the
calculated cross-point. The second stroke object 210
includes a second set of point objects and second range
information that includes a display start point and a display
end point, wherein the display start point is derived from the
calculated cross-point. Typically the first range information
of the first stroke object 210 retains the same display start
point as that of the original stroke object 210, and the second
range information of the second stroke object 210 retains the
same display end point as that of the original stroke object
210.

The ink data structured as above may be readily commu-
nicated between different devices or applications capable of
processing the ink data such that multiple users can share the

US 9,448,648 B2

15

experience of drawing and manipulating (slicing) strokes on
a common drawing area (common “canvas”) in real time.

According to various methods and systems of the present
invention, the ink data structured as above are generated/
outputted, drawn on a display, used to allow a user to slice
a stroke object 210, and shared amongst different users. Use
of the range information to display only a portion of the
actual curve segments included in a stroke object 210 makes
it possible to display sliced (newly-created) stroke objects
210 that precisely follow the shape of the original stroke
object 210 to its end. Also, because the sliced stroke objects
210 retain the same structure and the same control points
(albeit partially) as the original stroke object 210, there is no
need to calculate or recalculate new control points in con-
nection with a slicing operation.

The methods and systems of the present invention may be
applied in ink data in which curve segments are interpolated
according to various types curve interpolation algorithms,
such as the Poly-Bezier Curve (Cubic Bezier, Quadratic
Bezier) algorithm and the Catmull-Rom Curve algorithm
known in the art.

Description of the First Embodiment

FIG. 1 is a diagram illustrating an overall system in which
ink data 200 are utilized, according to embodiments of the
present invention. In FIG. 1, a cloud portion 1 outlined in
broken lines represents an infrastructure such as the Internet,
on which a system that utilizes ink data 200 of the present
invention may operate. The Internet as an exemplary infra-
structure is built on a standardized set of internet protocol
suites (e.g., I[P, TCP, HTTP) and libraries and software that
implement various Web and mail data formats (HTML,
MIME) and their communications methods (HTTP, SMTP),
which absorb differences amongst vendor-proprietary hard-
ware configurations and operating systems. In FIG. 1,
arrows in broken lines that pass through the infrastructure
portion 1 illustrate data exchange occurring based on these
infrastructure technologies. In FIG. 1, a cloud portion 10
outlined in solid lines represents an infrastructure for
exchanging ink data 200, which is realized by establishing
a common information model (language) regarding ink data
200. Ink data 200 are generalized so as to be commonly
usable by a variety of application services (or ecosystems)
and variety of devices. For example, Application Service #1
and Application Service #2 in FIG. 1 may both utilize and
exchange the ink data 200 via the ink data exchange infra-
structure 10, which may be realized as necessary libraries for
ink data processing section 100 that are distributedly sup-
ported by several kinds of computers, e.g., mobile terminals
and servers. Arrows in solid lines that pass through the data
exchange infrastructure 10 illustrate exchange of ink data
200 amongst various applications provided for several appli-
cation services utilizing a group of libraries for utilizing ink
data 200. By establishing a common information model in
the area (domain) of ink data 200, various types of appli-
cations and services can share and exchange ink data 200.

In FIG. 1, Device 10-1 includes, as an input sensor, a
pen-tablet-type input device capable of outputting pen pres-
sure data, and generates ink data using Application #1
provided for Application Service #1 provided by a first
provider/software vendor. The generated ink data 200 may
then be outputted in a suitable output form (e.g., SMF in
packets) corresponding to the destination media (e.g., a
network).

Device 10-1-2 is a tablet-type input device capable of
receiving hand-drawn input made by a user’s finger. The
sensor of Device 10-1-2 is not capable of outputting pen
pressure data, and generates ink data 200 that does not

15

20

40

45

50

16

utilize pen pressure information using Application #2 pro-
vided for Application Service #2 or in a suitable output form
corresponding to the destination media.

Device 10-3 is yet another type of computer (e.g., a
desktop-type PC) that uses to Application Service #2.
Device 10-3 may combine (synthesize) the ink data 200
respectively provided from Device 10-1-1 and Device 10-1-
2. Device 10-3 may render (draw) on its screen the ink data
200 outputted from Device 10-1-1 and Device 10-1-2 that
are superimposed on one another.

FIG. 2 is an entity relationship diagram of an ink data
model. The ink data 200 according to embodiments of the
present invention include a stroke object set 202, a drawing
style object (set) 230 including information needed to con-
trol the shape and color of a stroke object 210 when rendered
(drawn, expressed, rasterized) on a screen or display, a
metadata object 250 including non-drawing related infor-
mation that describes the stroke object 210 (e.g., author-
ship), and a manipulation object (set) 270 including infor-
mation needed to manipulate (e.g., slice, rotate) a pre-
existing stroke object 210.

The stroke object 210 in a stroke object set 202 includes
information necessary to reproduce a stroke 210 (or trace,
path) formed by movement of a pointer (finger, pen, etc.).
The stroke contains (217) multiple (“N” number of) point
objects 212 (Point_1 . . . Point_N). In other words, the stroke
is supported by coordinates of the multiple point objects,
which are obtained from sampling pen event data (pointer
operation) generated by movement of a pointer. The point
object may take any form, such as an absolute or relative
coordinate value form or a vector form, as long as it may
indicate a position of the point object in a 2D, 3D . . . ND
space. In various embodiments, the plurality of point objects
serve as control points, which can be used to interpolate
curve segments therebetween to thereby form a path (stroke)
of the stroke object 210.

According to embodiments of the present invention, the
stroke object 210 further includes range information that
defines which portion of the stroke object 210 is to be
displayed. In the illustrated embodiment, the range infor-
mation includes a first parameter “start Parameter” 301,
which defines a start point in a starting curve segment of the
stroke object 210, and a second parameter “end Parameter”
303, which defines an end point in an ending curve segment
of the stroke object 210. The range information is generated
for the stroke object 210 after the point objects have been
generated. For example, when a manipulation operation
such as a slicing operation is performed on a stroke object
210 to generate two new stroke objects 210, two sets of point
objects that respectively form the two new stroke objects
210 are obtained, and range information is added to each of
the two new stroke objects 210.

As used herein, the starting curve segment and the ending
curve segment mean those segments at which drawing
(display) operation starts and ends, respectively. Thus, a
very first curve segment of a stroke object 210, which is
designated not to be displayed at all, is not a “starting” curve
segment as used herein. Similarly, a very last curve segment,
which is designated not to be displayed at all, is not an
“ending” curve segment.

There are generally two methods for generating (X, y)
coordinates of multiple point objects. First, the coordinate
points derived from pen event data (pen operation) may be
outputted, while the pen event data is being inputted, as
points of “raw value type.” Second, after all points forming
a complete stroke are entered, a Cubic Spline function such
as a Bezier Curve function or a higher-order function (e.g.,

US 9,448,648 B2

17

Lagrange polynomial) representative of a fitted curve for the
stroke is generated, and a minimum number of point objects
needed to express the fitted curve may be obtained as of
“optimized point type.” In the following description, it is
assumed that the point objects are generated as of the “raw
value type” according to the first method, though the present
invention may use the point objects of the “optimized point
type” according to the second method also.

The drawing style object (set) 230 includes information
necessary to control the shape (stroke width, stroke style/
pattern) and color of a stroke object 210 when rendered
(drawn, expressed, rasterized) on a display. In short, the
drawing style object 230 controls rendering of a stroke
object 210. The drawing style object (set) 230 of the
illustrated example includes a Shape Fill object 232 and a
Particle Scatter object 234.

FIGS. 3B and 3C respectively illustrate two rendering
(drawing) results according to two different drawing style
objects of the same stroke object 210 of FIG. 3A.

FIG. 3B illustrates a rendering (drawing) result of the
Shape Fill object 232, which represents the stroke object 210
as a collection of circles 321 having various radii or widths.
The centers of the circles are aligned along the trace repre-
sented by the stroke object 210 and the outer peripheries of
the collection of the circles are used to generate (calculate)
envelopes 323 and 325. The envelopes 323 and 325 are then
used to draw the stroke object 210 of FIG. 3A on a screen
or display.

FIG. 3C illustrates a rendering (drawing) result of the
Particle Scatter object 234, which draws the stroke object
210 of FIG. 3A as a collection of point sprites, which are
shaped particles 341 (flakes) having a center, varying in size,
and a rotational angle 345 (0) relative to a defined axis of the
flake. Each flake of varying size is rotated by 0 relative to the
defined axis, and its center is shifted by an offset 343 from
the trace in a direction perpendicular to the trace direction.
The offset 343 is a random value derived from a predeter-
mined seed.

A metadata object 250 (see FIG. 2) includes non-drawing
related information that describes a stroke object 210, such
as authorship, pen ID, locally obtained date and time infor-
mation, location information obtained by GPS, etc.

A manipulation object (set) 270 includes information
necessary to manipulate (e.g., select, transform/rotate, slice,
etc.) a pre-existing stroke object 210 in whole or in part.
Such information is organized in the form of manipulation
objects, each of which is executable on the entirety of, or on
a part of, a stroke object 210 to effect desired manipulation
of the stroke object 210. Each manipulation object 270
includes parameters that define and control a specific
manipulation operation. For example, a Select object 272
includes parameters used to select and transform (e.g., rotate
by a transformation matrix) a stroke object 210 as shown in
FIG. 4A. A Slice object 274 includes parameters used to
slice a stroke object 210 as shown in FIG. 4B.

FIG. 4A illustrates operation of the Select object 272. The
target to be selected and transformed is a pre-existing stroke
object 210 “Stroke_i”, which in FIG. 4A is selected by
another Stroke_j (j>1). Stroke_j is newly entered based on
newly and continuously inputted pen event data and includes
point objects P1-Pn. Stroke_j is entered to define an area that
surrounds the pre-existing Stroke_i (hatched area in FIG.
4A) to thereby select the pre-existing Stroke_i. The Select
object 272 may apply a defined transformation matrix to
transform (rotate) the selected Stroke i, as illustrated by
arrow 405 in FIG. 4A. There are various methods to deter-
mine whether and how Stroke_i is selected by Stroke_j. For

10

15

20

25

30

35

40

45

50

55

60

65

18

example, if Stroke_j intersects Stroke_i at a single position
(P_intersect_Mid) between pl and p2, then only a right
portion of Stroke_i can be selected and be transformed by
405. The remaining left portion of the Stroke i is not
selected, and thus is maintained without being transformed
by transform 405. This can be achieved by simultaneously
applying Slice manipulation on Stroke_i using Stroke_j (i.e.,
Stroke_j is used to trigger the generation of both the Select
object 272 and the Slice object 274 for Stroke_i 401). In this
case Stroke_i is split into two newly generated strokes. One
of these newly generated strokes is completely surrounded
by Stroke_j and therefore selected.

FIG. 4B illustrates operation of the Slice object 274. The
Slice object 274, which is a partial manipulation for the
Stroke_i 401, is generated by a new stroke object 403
(Stroke_j) containing point objects P1-P4. The stroke object
403 is associated with type information indicating that it is
not a normal stroke object 210 but is a manipulation object
configured to perform a defined manipulative operation on a
pre-existing stroke object 210. For example, the stroke
object 403 (Stroke_j) may be labeled as of “INPUT 3~
(manipulation object) type, as will be more fully described
below in reference to FIG. 5. As illustrated in FIG. 4B, the
Slice object 274 (embodied in Stroke_j of “INPUT 3” type)
is inputted to slice a pre-existing stroke object 401
(Stroke_i). To this end, the Slice object 274 includes param-
eters needed to slice the pre-existing stroke object 401
(Stroke_i) into two slices: slice_il 407 and slice i2 409. The
Slice object 274 may function as a slicer, an eraser, a portion
extractor, etc., in various applications. After the slice opera-
tion is performed to generate the two new slices 407 and
409, these slices may be “committed” (or finalized) into
becoming two fully-defined stroke objects 210. At this point,
the original stroke object 401 (Stroke_i) need not be retained
nor the (uncommitted) slices 407 and 409 and the Slice
object 274 (Stroke_j) itself used to generate the slices.

FIG. 5 is a functional block diagram of an ink data
processing device capable of outputting, manipulating,
drawing, and communicating (transmitting/receiving) the
ink data according to embodiments of the present invention.
The device generally corresponds to Device 10-1-1 (Sensor
type 1) or Device 10-1-2 (Sensor type 2) in FIG. 1.

The device in this example is a computing device includ-
ing an input sensor 110, an input processing section 111, an
ink data processing section 100, an application section
300-1, a graphic processing section 300, a display 113, and
a communications section 112 (“Tx, Rx™), all controlled by
an operating system 400-1 executed by a CPU coupled to
memory device(s). The device may be a personal computer
(PC), a mobile terminal device, etc., including or coupled to
an input sensor 110 in the form of a pen-tablet sensor.

The input sensor 110 detects a user’s handwriting motion
(via a pointer such as a pen and a finger) and generates input
data signal representative of the detected handwriting
motion. For example, an electrostatic sensor, a pressure-
sensitive sensor, an electromagnetic resonance (EMR) based
sensor may be used.

The input processing section 111 receives input data from
the input sensor 110, where the input data is of the type
dependent on each input sensor, and converts the input data
to “pen event data” amenable for further processing to
generate ink data 200. The generated “pen event data” is
inputted as “INPUT 1” (see point “A” in FIG. 5) to the ink
data processing section 100. The pen event data (“INPUT
1) includes at least the sensed coordinate positions, and
may additionally include pen pressure data, pen tilt data,
etc., depending on whether the input sensor 110 has pres-

US 9,448,648 B2

19

sure/tilt detection capabilities. Thus, the pen event data
outputted from the input processing section 111 are also
device/sensor dependent. The input processing section 111 is
typically realized as a driver software program of the input
sensor 110, such as the input subsystem that runs on
Android® operation system. The configuration of the input
sensor 110 and the input processing section 111 is not limited
to that which is illustrated. For example, some or all of the
input sensor 110 and the input processing section 111 may be
provided as a digital stationery device such as a pen-shaped
device.

The ink data processing section 100 includes an ink data
generation section 120 and an ink data formatting section
140. The ink data processing section 100 (more specifically
the ink data generation section 120) is responsible for
generating ink data 200 based on the pen event data (“IN-
PUT 17) received from the input processing section 111,
context information (“INPUT 2”) and manipulation infor-
mation (“INPUT 3”) received from the application section
300-1. The ink data processing section 100 is typically
realized as a set of libraries that are dynamically and/or
statically linked to the application section 300-1.

The context information (“INPUT 2”) is information
describing the context or environment of the pen event data
(“INPUT 1”) and may indicate, for example, a used pen tip
type (e.g., brush, crayon, pencil), used pen colors (red,
green, blue), etc. The context information is selected by the
application section 300-1 typically prior to entry of input
data into the input sensor 110.

The manipulation information (“INPUT 3”) specifies that
the next input from the input sensor 110 is not to be treated
as typical pen event data (a normal stroke object 210) but is
a command to apply some manipulation operation (e.g.,
slicing, erasing, extracting, deleting, copying, enlarging,
etc.) to a pre-existing stroke object 210. When INPUT 3 is
received, the ink data generation section 120 generates a
new stroke object # and manipulation object to be applied
to pre-existing stroke objects #0~#i caused by the new
stroke object #1. Manipulation information (“INPUT 3”)
may be generated and inputted to the ink data generation
section 120 by user selection of a defined switch, button,
etc., in an application supported in the application section
300-1.

The ink data generation section 120 receives the pen event
data (“INPUT 17), the context information (“INPUT 27),
and the manipulation information (“INPUT 3”") and gener-
ates “ink data” (ink data 200) (at point “D” in FIG. 5)
including a stroke object 210, a drawing style object 230, a
manipulation object 270 and a metadata object 250. Further
details of the ink data generation section 120 will be
described below in reference to FIG. 6.

Still referring to FIG. 5, the ink data formatting section
140 of the ink data processing section 100 receives the ink
data from the ink data generation section 120, via point “D,”
and outputs the ink data in a format selected according to
format selection information (Fmt-Sel) received from the
application section 300-1.

Specifically, the ink data formatting section 140 includes
an ink data communication section 144 and a recording
format data processing section 142. The ink data commu-
nication section 144 is configured to transmit (via “F” in
FIG. 5) and receive (via “F_in” in FIG. 5) the ink data 200
in a stroke message format (SMF), which is a format suited
for communicating the ink data 200 (in real time, for
example) to other (remote) devices over a network. The
recording format data processing section 142 is configured
to format the ink data in a stroke file format (SFF) (see “E”

10

15

20

25

30

35

40

45

50

55

60

65

20

in FIG. 5), which is a format suited for storing the ink data
200 in a more permanent storage medium.

The graphic processing section 300 receives the ink data
200 including stroke objects 210, drawing style objects 230,
manipulation objects 270 and metadata objects 250, via “D,”
and outputs, via “H,” a set of pixel values at a defined
resolution level including color (e.g., RGB) values of the
pixels. For example, the graphic processing section 300
receives point objects (pl~pn) that form a stroke object 210
(see FIG. 3A), interpolates curves between the point objects
used as control points according to a curve interpolation
algorithm, and draws (renders) the resulting path of the
stroke object 210 on the display 113 using associated GPU
libraries such as DirectX® and OpenGL® libraries.

According to various embodiments, the graphic process-
ing section 300 uses the point objects contained in the
received stroke object 210 as control points to interpolate
curves according to a suitable curve interpolation algorithm
such as the Catmull-Rom Curve algorithm and the Poly-
Bezier Curve algorithm known in the art.

Furthermore, in accordance with exemplary embodiments
of the present invention, the graphic processing section 300
displays a stroke object 210 in reference to the “start
Parameter” value 301 and the “end Parameter” value 303
included in the stroke object 210. In other words, the graphic
processing section 300 renders (displays) only a portion of
the stroke object 210 delineated (bound) by the “start
Parameter” value 301 and the “end Parameter” value 303. As
used herein, (to be) displayed means being displayed in the
end. Various methods may be used to set whether a defined
portion is to be displayed or not. For example, a method may
be used not to include vertex information, to be supplied to
a GPU library, for the defined portion not to be displayed, to
thereby not generate pixel data for the defined portion. As
another example, a method may be used to set the transpar-
ency of the defined portion not to be displayed, in a fully
reproduced stroke object 210, at 100%.

The application section 300-1 includes one or more user
applications, such as Application #1 of FIG. 1, which
dynamically or statically link the ink data processing section
100. For example, the application section 300-1 may include
a real-time conference application, a document generation
application, a drawing application, etc., which may all use
the ink data 200 according to embodiments of the present
invention. The applications in the application section 300-1
provide, for example, a user interface (UI) that allows a user
to enter manipulation information (“INPUT 3”) to the ink
data processing section 100.

FIG. 6 is a functional block diagram of the ink data
processing section 100, which includes the ink data genera-
tion section 120 and the ink data formatting section 140.

The ink data generation section 120 includes a stroke
object handling section 122, a metadata object handling
section 124, a drawing style object handling section 126, and
a manipulation object handling section 128, which are
respectively configured to handle and generate stroke
objects 210, metadata objects 250, drawing style objects
230, and manipulation objects 270 that collectively form the
ink data 200 according to embodiments of the present
invention.

The stroke object handling section 122 receives the pen
event data (“INPUT 1) and generates a stroke object 210
(see “D” in FIG. 6). The stroke object handling section 122
generates point objects of the raw value type, as described
above, to form a stroke object 210. In exemplary embodi-
ments, the stroke object handling section 122 continuously
generates the point objects as pen event data are inputted,

US 9,448,648 B2

21

instead of waiting to receive the entire pen event data before
starting to generate the point objects. The stroke object
handling section 122 continuously outputs the generated
point objects to the graphic processing section 300 (see FIG.
5) or to the ink data formatting section 140, via “D,” as will
be more fully described below in reference to FIG. 7.
Application 300-1 may control stroke object handling sec-
tion 122 to switch between outputting ink data 200 of raw
value type and outputting ink data 200 of optimized value
type depending on, for example, whether application 300-1
performs real time communication or needs highly-com-
pressed vector data.

The metadata object handling section 124, upon receipt of
the pen event data (“INPUT 1”) indicative of start of a pen
stroke (i.e., “pen down”) or upon generation of a new stroke
object 210 (upon slicing, for example), processes the context
information (“INPUT 2”) to extract non-drawing related
information such as author information, date and time infor-
mation, etc. The metadata object handling section 124
creates a metadata object 250 including the extracted meta-
data in association with the corresponding stroke object 210.

The drawing style object handling section 126, upon
receipt of the pen event data (“INPUT 1”) indicative of pen
down or upon generation of a new stroke object 210,
processes the context information (“INPUT 2”) to extract
drawing-related information necessary to express the stroke
object 210 on a display. The drawing style object handling
section 126 creates a drawing style object 230 (e.g., the
Shape Fill object 232 and the Particle Scatter object 234) in
association with the corresponding stroke object 210.

The manipulation object handling section 128, upon
receipt of the manipulation information (“INPUT 3”), gen-
erates a manipulation object 270 that defines a manipulative
or transformative operation (e.g., the “Select (transform)”
object 272 and the Slice object 274 in FIG. 2) to be applied
to the whole or, or to a part of, a pre-existing stroke object
210.

In FIG. 6, two broken-line arrows “M1 (Local)” and “M2
(Remote)” indicate the direction of manipulation operation,
i.e., where the target stroke object 210 is to be manipulated
or transformed. As shown, manipulation operation defined
by a manipulation object 270 may be applied locally (M1)
to a stroke object 210 existing in the stroke object handling
section 122, or remotely (M2) via the ink data formatting
section 140 to a stroke object 210 existing on an external
network such as in a remote reception device coupled to the
network.

In FIG. 6, the stroke object 210, the metadata object 250,
and the drawing style object 230 are illustrated to be inputted
to the recording format data processing section 142 and the
ink data communication section 144 of the ink data format-
ting section 140, while the manipulation object 270 is
inputted only to the ink data communication section 144 and
not inputted to 142. The first three are preferably perma-
nently or semi-permanently stored and thus are formatted in
the stroke file format (SFF), SVG format, InkML format,
etc., which are suited for storage. Also, when a new stroke
object 210 is generated, the stroke object 210 and its
associated metadata and drawing style objects are commu-
nicated to the receiving side over a network and thus are
processed in both of the ink data communication section 144
and the recording format data processing section 142. The
manipulation object 270, on the other hand, is transitory by
nature because it defines some manipulative operation to be
applied to a pre-existing stroke object 210. Once the
manipulative operation is applied (committed) to the pre-
existing stroke object 210, the manipulation object 270 is

10

15

20

25

30

35

40

45

50

55

60

65

22

flushed from memory. Thus, the manipulation object 270 is
typically formatted in the stroke message format (SMF)
suited for transmission over a network, and is not included
in the stroke file format (SFF).

The recording format data processing section 142 of the
ink data formatting section 140 includes multiple processing
sections 142-1, 142-2, etc., for respectively outputting the
ink data 200 in different recording formats (SFF, InkML of
(D1), SVG of (D3), HTMLS of (D4), etc.). For example, the
processing section 142-1 is configured to output the ink data
200 in the SFF and may employ Google’s Protocol Buffers
(https://developers.google.com/protocol-buffers/)
and Message, to serialize the SFF file-formatted data. The
processing section 142-2 may perform format transforma-
tion processing to absorb any differences between the SFF
file, InkML of (D1), and SVG of (D3), such as any differ-
ences between the definitions of “trace” in (D1) and the
definition of “path” in (D3) or “Canvas Path” in (D4.)

FIG. 7 is a functional block diagram of the stroke object
handling section 122 in the ink data processing section 100.
The stroke object handling section 122 is capable of con-
tinuously outputting point objects, which form a stroke
object 210 in the “raw value type”, to the graphic processing
section 300 or to the ink data formatting section 140 as an
increasing amount of the pen event data is inputted. The
stroke object handling section 122 includes or is coupled to
a memory device 770.

The stroke object handling section 122 includes a start/
end parameter setting section 122A, which sets start point
and end point parameters, a path builder section 122B,
which selects a suitable path builder based on a device type,
an adding to stroke section 122D, which controls how many
point objects should be added to a partially formed stroke
object 210, and a suffixing section 122E, which fills in a gap
(“Lag” in FIG. 8) at an end of a stroke object 210.

Fragmented data generated and stored in memory 770 are
used for real time transmission as fragments of a stroke
object 210. Fragmented data are transmitted per unit of byte
or time, as will be more fully described below in the second
embodiment.

The start/end parameter setting section 122A, upon detec-
tion of a pen down event (start of a pen stroke) and a pen up
event (end of a pen stroke), sets the start Parameter 301 and
the end Parameter 303 to their initial default values. For
example, upon a pen down event, the start Parameter 301 is
set to its default value of “0” and, upon a pen up event, the
end Parameter 303 is set to its default value of “1.” The
initial values of these parameters need not be stored in the
memory device 770, and may be set, for example, in the
form of a flag that implicitly indicates that these parameters
are set to their default values.

The path builder section 122B is configured to select one
path builder suited for a particular type of pen event data
outputted from the input processing section 111, based on a
SetlnputDynamics value 701 included in the context infor-
mation (“INPUT 2”). For example, if pen event data
includes pen pressure values, a PressurePath builder 122B1
is selected that includes a first (pressure) function f1 capable
of deriving the stroke width (W) and transparency (A) based
on the pen pressure values. On the other hand, if pen event
data does not include pen pressure values, a Velocity Path
builder 122B2 is selected. The Velocity Path builder 122B2
includes a second (velocity) function 2 capable of deriving
the stroke width (W) and transparency (A) based on the pen
movement speed, which is determined from the amount of
change in the point coordinates or time stamps included in
the pen event data. In other words, the Velocity Path builder

US 9,448,648 B2

23

122B2 substitutes velocity values for pressure values used in
the Pressure Path builder 122B1. Since all pen event data
may be categorized into either a type including pressure
information (Type 1) or a type not including pressure
information (Type 2), all types of pen event data may be
processed by either the PressurePath builder 122B1 or the
Velocity Path builder 122B2. This reason and how Pressure-
Path builder 122B1 and VelocityPathBuildeer 122B2 oper-
ates will be described below in reference to the third
embodiment.

The stroke object handing section 122 also includes a
smoothener 122C, which starts to apply smoothing opera-
tion to a stroke object 210 as it is generated before the stroke
object 210 is completed, based on Use Smoothing informa-
tion 705 included in the context information (“INPUT 27).
Any suitable smoothing operation such as acceleration aver-
aging, weight averaging, exponential smoothing, double-
exponential smoothing, etc., may be used.

FIG. 8 illustrates a smoothing operation performed by the
smoothener 122C in row A and row B. Row A corresponds
to point “A” in FIG. 7 (before smoothing) and row B
corresponds to point “B” in FIG. 7 (after smoothing). In row
A, x1~x10 represent X coordinates of 10 points obtained
from the pen event data. In FIG. 8, x1~x10 are (10, 20, 30,
45, 60, 80, 90, 100, 110, 115).

In row B, x1'~x10' represent X coordinates of the 10
points after a smoothing operation has been applied. In the
illustrated example, the following exponential smoothing
function is applied:

Xy =0+ (1-a)* X,

where the filter strength a=0.5.

In FIG. 8, x1'~x10" are (10, 15, 23, 34, 47, 63, 77, 88, 99,
108).

The smoothing operation performed by the smoothener
122C is applied on a rolling basis to each of the points as
their point coordinates are derived, to continuously output
modified (smoothed) positions of these points. Thus, from
the time when a pen down event is detected, the stroke object
handling section 122 starts to generate and output stroke
object 210 with “raw value type” instead of waiting to detect
a pen up event as a whole.

In row B, point x0' is added in this case where the
Catmull-Rom Curve is used to define an interpolation curve
between each pair of control points. As discussed above, the
Catmull-Rom Curve defines each curve segment with four
control points including a start point (Pi) and an end point
(Pi+1), and a point “before” the start point (Pi-1), and a
point “after” the end point (Pi+2). Thus, to define a starting
curve segment between points x1' and x2', the start point x1'
is duplicated to create a new point x0' (at the same position
as x1") that may be used with points x1', x2' and x3' as
control points for defining the curve segment between x1'
and x2'. The position of the new point x0' may be adjusted
to a position where the Catmull-Rom Curve between x1' and
x2' best fits the inputted stroke. By simply duplicating a
value of x1' (p1) to create a value of x0' (p0), the process can
instantly define a position of x0' and set components of a
vector from x0' (p0) to x1' (p1) as zero. The process is suited
for real-time implementation (no need to wait for p2 to
generate p0), and does not unduly influence (e.g., pushing to
one side or another) the curvature of the curve segment
between x1' (p1) and x2' (p2).

Referring back to FIG. 7, the adding to stroke section
122D determines how many of the point objects are estab-
lished and stored in the memory device 770 and thus can be
added to a partial data of the stroke object 210 to be

(Eq. 1)

10

15

20

25

30

35

40

45

50

55

60

65

24

outputted. In the illustrated embodiment, point objects
P1~Pn-1 are established in the memory device 770 and
determined to be added to the partial data of the stroke object
210 to be outputted to the graphic processing section 300 or
to the ink data formatting section 140 (instead of waiting for
the entire stroke object to be completed). The graphic
processing section 300 is capable of displaying the partially
formed stroke object. In other words the graphic processing
section 300 displays the stroke object starting with an initial
dot as it continues to grow. The ink data formatting section
140 (or the ink data communication section 144) is capable
of formatting and sending the established partial data, as
fragmented data of a stroke object, in a transmission format.
The transmission method of the fragmented data will be
explained in greater detail in embodiment two.

Referring to FIGS. 7 and 8, the suffixing section 122E fills
in a gap (or “Lag”) between the inputted position at the end
of a stroke object 210 (x10, row A) and the smoothed
position at the end of the stroke object 210 (x10', row B). In
FIG. 8, row C illustrates the “Lag” filling (suffixing) opera-
tion. In the illustrated example, after the smoothing opera-
tion, a “Lag” is created between the originally inputted
position x10 (115) and the smoothed position x10' (108) at
the end of the stroke object 210. Depending on the content
of the Use Smoothing information 705 included in the
context information (“INPUT 2”), the stroke object handling
section 122 determines to either perform or not perform the
suffixing operation. The suffixing operation can be also
invoked every time when a new point object is added to the
stroke object 210. In this case the suffixing operation pro-
vides the graphic processing section 300 with point objects
that can be used as a temporary visual preview. The newly
generated points by the suffixing operation are not yet part
of the final stroke object 210 and are, therefore, ignored by
the ink data formatting section 140 (or the ink data com-
munication section 144) until it is expressly added.

If the suffixing operation is to be performed, in the
illustrated embodiment, the stroke object handling section
122 adds new point objects at x11', x12' and x13'. Point x12'
is added at the same position as the originally inputted last
position x10 (115) of row A. Point x11' is added at a
smoothed point between points x10' and x12'. Finally,
because in this example the Catmull-Rom Curve is used to
define an interpolation curve between each pair of control
points, the end point x12' is duplicated to create a new point
x13' (at the same position as x12"), which is needed to define
an ending curve segment between x11' and x12' as the
Catmull-Rom Curve. The position of the new point x13' may
be adjusted to a position where the Catmull-Rom Curve
between x11' and x12' best fits the inputted stroke. Also,
even when the suffixing operation is not to be performed, if
the Catmull-Rom Curve is used, the last smoothed point x10'
in row B may be duplicated to create a new point x10' (new),
which may be used with points x8', x9' and x10' as control
points to define the last curve segment between x9' and x10'
in this case. By simply duplicating a value of x9' to create
a value of x10', the process can instantly define a position of
x10'" at a neutral position, without unduly influencing (e.g.,
pushing to one side or another) the curvature of the curve
segment between x8' (p8) and x9' (p9).

In FIG. 8, row D illustrates the stroke object 210, which
has been smoothed (from row A to row B), suffixed at the
end (from row B to row C), and continuously outputted
under the control of the adding to stroke section 122D. The
stroke object 210 in this example is defined to generate
interpolation curves according to a Catmull-Rom Curve
algorithm, wherein each curve segment (Pi-Pi+1) is defined

US 9,448,648 B2

25

by four control points (Pi-1, Pi, Pi+1, Pi+2) and the resulting
curve passes through all of the control points. Thus, the
stroke object 210 includes a starting curve segment (x1'-x2")
defined by four control points x0', x1', x2', X3, and includes
an ending curve segment (x11'-x12") defined by four control
points x10', x11', x12', x13". The stroke object 210 also
includes the start parameter 301 for the starting curve
segment (x1'-x2"), which is set to a default value of “0.0” by
the start/end parameter setting section 122A. The default
value of “0.0” means that the starting curve segment (x1'-
x2") is to be fully displayed (rendered, expressed) from the
initial point x1'. The stroke object 210 further includes the
end parameter 303 for the ending curve segment (x11'-x12"),
which is set to a default value of “1.0” by the start/end
parameter setting section 122A. The default value of “1.0”
means that the ending curve segment (x11'-x12") is to be
fully displayed to the last point x12".

FIG. 9 is a flow chart illustrating a sample process
performed by the ink data processing section 100 of FIG. 6
to generate ink data 200. The process starts with the ink data
generation section 120 receiving pen event data (“INPUT
1”). In step S901, the stroke object handling section 122
receives the pen event data as INPUT 1, which includes
position coordinates (X, y) and timing information indicative
of one of the following three types of timing, and carries out
processing according to the determined timing:

1) Pen down time; when a pointer such as a finger or a
pointing device (e.g., pen-type device) comes into
contact with another (sensing) object;

2) Pen moving time; between a pen down time and a pen
up time;

3) Pen up time; when a pointer is moved away (detached)
from another (sensing) object.

<1. A Processing Flow at Pen Down Time>

When the event type is “ACTION_DOWN?” indicating a
pen down event, in step S910, the stroke object handling
section 122 sets the start parameter 301 of a starting curve
segment of a stroke object 210 to be newly created to a
default value (“0.0”). As described above, the default value
(““0.0) defines that the starting curve segment is to be fully
displayed from its initial point. At the same time, the stroke
object handling section 122 may also set the end parameter
303 of an ending curve segment of the stroke object 210 to
a default value (“1.0”) to define that the ending curve
segment too is to be fully displayed to its last point.

In step S912, the stroke object handling section 122,
based on a SetInputDynamics parameter 701 included in the
context information (“INPUT 2” in FIG. 7), selects one path
builder (e.g., 122B1 or 122B2 in FIG. 7) out of a plurality
of path builders to use to build the stroke object 210.

In step S914, the stroke object handling section 122,
based on a Num_of CHs parameter 703 included in the
context information (“INPUT 2”), determines a set of
parameters to be outputted from the path builder selected in
step S912 above. A set of parameters to be outputted may be,
for example, (x,y, W, A), (X,y, W), (X,y,A), or (X, y), where
(%, y) are X, y coordinates of the point objects, W is a stroke
width value, and A is alpha (o) indicative of transparency (or
opacity). In addition to the 2D coordinates (x, y), a “z” value
may be added to produce 3D coordinates.

In step S916, the stroke object handling section 122,
based on the Use Smoothing parameter 705 included in the
context information (“INPUT 2”), determines whether
smoothing operation is to be applied to the set of parameters
outputted from the selected path builder. The Use Smoothing
parameter 705 may also indicate to which ones of the
parameters the smoothing operation is applied.

30

35

40

45

50

55

60

65

26

When application of the smoothing is indicated (YES to
step S916), in step S918, the indicated smoothing process is
performed. FIG. 7 illustrates a case in which the smoothing
process is applied to (x, y, W) parameters, but is not applied
to “A” (alpha) parameters. The context information (“IN-
PUT 2”) may additionally include sampling rate information
of the input sensor 110, which the stroke object handling
section 122 may use to select a smoothing process of desired
strength level. For example, when the sampling rate of the
input sensor 110 is lower (e.g., 10’s of samples per second
as opposed to 100’s of samples per second), a stronger
smoothing process having a greater smoothness value (ef-
fect) may be selected.

In step S919, setting parameters used above are outputted
as attributes of the ink data 200. The parameters indicate, for
example, whether the point objects included in a stroke
object 210 are smoothed (whether S916 is YES or NO) or
the type or strength of smoothing filter that may be used.
Based on the parameters, it can be determined whether the
point objects included in the stroke object 210 are smoothed
or not, should be (further) smoothed or not, or can be treated
as the exact input data that may be used, for example, in
signature verification applications, etc.

In step 920, as illustrated above in reference to FIG. 8,
row B, the initial point (control point) x1' is duplicated to
generate a new control point x0' for defining a starting curve
segment between x1' and x2' as a Catmull-Rom Curve.

In step S970, the ink data processing section 100 deter-
mines whether another (remote) user or computer exists,
who may be sharing (e.g., receiving, manipulating) the ink
data 200 generated by the ink data processing section 100
local computer.

If such other user exists, in step S972, the ink data
processing section 100, based on the Fmt-Sel parameter
received from the application section 300-1 (see FIG. 5),
controls the ink data communication section 144 to format
the ink data 200 to be outputted in the stroke message format
(SMF). The ink data communication section 144 first out-
puts a message DATA_INK_BGNOS 1201 (see FIG. 12),
which is a partial (fragmented) message including initial
point coordinates and a drawing style object 230 necessary
for the remote user’s reception device to draw the (partial)
stroke object 210. The reception device that receives the
DATA_INK_BGNOS message 1201 may immediately start
to render (display) the initial portion of the stroke object 210
in the specified shape, color, etc., using the received drawing
style object 230, before receiving the remainder of the stroke
object 210.

<2. A Processing Flow at Pen Moving Time>

Returning back to the initial step S901 of the flow chart,
the ink data generation section 120 receives another new
event data (“INPUT 1”) and determines which type it is: pen
down event, pen moving event, or pen up event. When the
event type is “ACTION_MOVE” indicating that a pen is
moving in the middle of the stroke object 210 between a start
point and an end point, the ink data generation section 120
receives the X, y coordinate values as well as time stamp
and/or pen pressure information as included in the pen event
data depending on a particular input device used, and
proceeds to step S930.

In step S930, the stroke object handling section 122,
based on a Use Smoothing parameter 705 included in the
context information (“INPUT 2”), determines whether
smoothing operation is to be applied to the received set of
parameters, (X, y, W, A) for example. The Smoothing
parameter 705 may additionally indicate to which ones of

US 9,448,648 B2

27

the parameters the smoothing operation is applied. Opera-
tion of step S930 is the same as that of step S916 described
above.

When application of the smoothing is indicated (YES to
step S930), in step S932, the indicated smoothing process is
performed.

In step S934, the stroke object handling section 122 uses
the adding to stroke section 122D to determine how many of
the point objects are established and stored in the memory
device 770 to be added to a partial data of the stroke object
210 to be outputted. In this step the adding to stroke section
122D may also change the values of the point objects before
adding them to partial data. For example, the adding to
stroke section 122D may change the value of alpha param-
eter on a random basis to simulate a ball pen that runs out
of ink.

In step S974, similarly to step S970 described above, the
ink data processing section 100 determines whether another
(remote) user exists who is sharing the ink data 200 gener-
ated by the ink data processing section 100 in real time.

If such other user exists, in step S976, the ink data
processing section 100 uses the ink data communication
section 144 to generate and output a message DATA_
INK_MVDOS 1203 (see FIG. 12), which is a partial (frag-
mented) message including point objects subsequent to the
initial point object(s) included in the DATA_INK_BGNOS
1201 generated in step S972 above. The number of point
objects to be added to the message DATA_INK_MVDOS
1203 is determined by the adding to stroke section 122D in
step S934 above. Multiple DATA_INK_MVDOS messages
may be generated and outputted depending on size of the
stroke object 210. The remote user’s reception device that
receives the DATA_INK_MVDOS message(s) 1203 may
continue to render (display) the middle portion of the stroke
object 210 in continuation to the initial portion of the stroke
object 210.

<3. A Processing Flow at Pen Up Time>

Returning back to the initial step S901 of the flow chart,
the ink data generation section 120 receives another new
event data (“INPUT 1”) and determines which type it is.
When the event type is “ACTION_UP” indicating a pen up
event (i.e., drawing of a stroke object 210 is completed and
a pointer is removed), in step S950, the stroke object
handling section 122 determines whether the smoothing
operation is to be applied to the received set of parameters,
(X, y, W, A) for example, as well as to which ones of the
parameters the smoothing operation is applied. Operation of
step S950 is the same as that of steps S916 and S930
described above.

When application of the smoothing is indicated (YES to
step S950), in step S952, the indicated smoothing process is
performed. Also, when the Use Smoothing parameter 705 so
indicates, the stroke object handling section 122 additionally
performs the suffixing operation as shown in FIG. 8, row C.
Depending on the content of the Use Smoothing parameter
705, the suffixing operation is not necessarily performed.
Also, when smoothing operation is not performed, the
suffixing operation is not necessary and is not performed.

In step S953, also as illustrated in FIG. 8, row C, the end
point (control point) x12' is duplicated to generate a new
control point x13' for defining an ending curve segment
between x11' and x12' as a Catmull-Rom Curve.

In step S954, the stroke object handling section 122 sets
the end parameter 303 of the ending curve segment (x11'-
x12") to a default value (“1.0”) indicating that the ending
curve segment is to be fully displayed to its end point x12'.

30

35

40

45

50

55

28

This step may be skipped when the end parameter 303 is
already set to its default value in step S910 above.

In step S978, similarly to steps S970 and S978 described
above, the ink data processing section 100 determines
whether another (remote) user exists who is sharing the ink
data 200 generated by the ink data processing section 100 in
real time.

If such other user exists, in step S980, the ink data
processing section 100 uses the ink data communication
section 144 to generate and output a message DATA_
INK_ENDOS 1205 (see FIG. 12), which is the last partial
(fragmented) message including the last set of (suffixed)
point objects of the stroke object 210. The remote user’s
reception device that receives the DATA_INK_ENDOS
message 1205 may recognize that it is the last message for
the stroke object 210 and completes the drawing operation
of the stroke object 210.

The methods and systems for generating and communi-
cating ink data 200 according to embodiments of the present
invention described above are capable of continuously
inputting pen event data and simultaneously outputting a
partial stroke object 210 as it is built. A remote user’s
reception device that receives the ink data 200 from the ink
data processing section 100 starts to display each stroke
object 210 and continues to display the stroke object 210 as
it grows without having to wait to receive the entire stroke
object 210.

According to various embodiments of the present inven-
tion, the smoothing operation is selectively applied to the
inputted pen event data parameters. A suitable curve inter-
polation algorithm such as the Catmull-Rom Curve algo-
rithm is applied to build interpolated curves using the
smoothed point objects as control points.

FIG. 10 illustrates a sample stroke file format (SFF) proto
(schema) file written in the Interface Definition Language
(IDL), which may be outputted to point “E” from the
recording format data processing section 142 of the ink data
processing device of FIG. 5. The proto (schema) file
describes how ink data 200 is serialized in a stroke file
format as a byte sequence. Lines 02-07 of the illustrated
proto file include data that describes the information
included in a drawing area (or drawing “canvas”). For
example, Line 06 enclosed in a broken-line rectangle defines
that a stroke object 210 is repeated multiple times in the
drawing area. Line 04 “decimalPrecision” defines the cal-
culation accuracy/resolution of a point object of the stroke
object 210.

“decimal Precision” in Line 04 is preferably a logarithmic
value indicative of desired accuracy and/or resolution.

Lines 11-17 of the illustrated proto file represent a stroke
object 210. For example, Line 12 indicates that the stroke
object 210 includes a repeated plurality of “sint32”-type
(variable byte size packet) point objects.

In some embodiments, a parameter of the second and
subsequent point objects is defined by an offset (delta) value
relative to the corresponding parameter value of the initial
point object or the immediately preceding point object. Use
of offset (relative) values, as opposed to absolute values,
may help reduce the amount of data needed to define the
second and subsequent point objects that form a stroke
object 210.

For example, coordinates (X, y) of a point in Line 12 are
determined based on the following processing that utilizes
the decimalPrecision.

US 9,448,648 B2

29

1. Converted from float to int32 by the following conver-
sion:

_ 1 decimalPrecision.
xinti(lnt)'xﬁoat 10

2. To the integer values is performed delta encoding:

Fencoded 01 il 015

Xencodedl Findli=11-Xinsl]; >0

Processing 1: xfloat is float stored in a computing device.
The coordinates of point object 212 are stored in the memory
770 as a floating decimal type value having relatively many
bits, such as the float type and the double type. Xfloat is
multiplied by 10Q9ecimal £recision The data type of the result-
ing value, xfloat is converted (cast) to an integer type to
thereby produce xint.

Processing 2: offsets of xint are derived. The derived
offsets are encoded as “sint32”-type data.

Lines 13-14 enclosed in a broken-line rectangle define the
start Parameter 301 and the end Parameter 303 of the stroke
object 210. As illustrated, these parameters 301 and 303 are
defined separately from the point objects that form the stroke
object 210 as defined in Line 12. In the illustrated example,
the start and end parameters 301 and 303 are expressed as
float type values, and are set to their default values of “0”
and “1,” respectively. As described later, when a manipula-
tion (slicing) operation is applied to the stroke object 210,
the start and/or end parameters may be changed to new
value(s).

Line 15 “variableStrokeWidth” stores the width values of
the plurality of point objects included in the stroke object
210. Similar to the point at Line 12, it uses “sint32”-type and
the second and subsequent point objects’ width is defined by
an offset (delta). The presence of this parameter implies that
each of the point objects included in the stroke object 210 is
individually associated with its own width value. In other
words, if this parameter does not exist, the stroke object 210
has a fixed width stored in “strokeWidth” property at Line
16.

FIG. 11 illustrates a sample portion of stroke object 210
in the stroke file format (SFF), which may be outputted to
point “E” from the recording format data processing section
142 of the ink data processing device of FIG. 5. The
illustrated stroke object 210 in the stroke file format contains
drawing style object 230, filter parameters (useSmoothing,
filter strength) and the point objects pO~p13 at x coordinates
x0'~x13" as illustrated in FIG. 8, row D. The start Parameter
field 1101 includes the start Parameter 301, and the end
Parameter field 1103 includes the end Parameter 303. The
field “x0” (1105) includes the absolute x coordinate value of
the initial point object of the stroke object 210. The field
“rel_x17 (1107) includes the x coordinate offset (delta) value
of the second point object of the stroke object 210 relative
to the absolute x coordinate value of the initial point object.

FIG. 12 illustrates three messages formatted in the stroke
message format (SMF), which may be outputted to point “F”
from the ink data communication section 144 of the ink data
processing device of FIG. 5, and one packet outputted to
point “G” from the network communications section 112 of
the ink data processing device of FIG. 5.

The DATA_INK_BGNOS 1201 message, outputted in
step S972 of FIG. 9, includes information indicating that the
message is the first message of the stroke object 210 (e.g.,
message type BGNOS, F101), the drawing area 1D (F102)
that indicates a common drawing area shared between the
ink data processing device and a remote user’s reception
device, and stroke ID that is used to identify the stroke object

15

20

25

30

35

40

45

50

55

60

65

30

210 from among multiple stroke objects 210 within the
drawing area (F103). F101, F102 and F103 constitute a
message header.

The DATA_INK_BGNOS 1201 message further includes
the drawing style object 230 (F104), filter parameters related
to smoothing filter applied (not shown), and the start Param-
eter and the end Parameter (F105_SP_EP), and optionally (if
room permits) any of the initial fragmented data of the point
objects that form part of the stroke object 210 (F105_begin),
followed by a CRC error correction value. For example,
“F105_begin” field may contain point objects pO~p3 of FIG.
8. F104, F105_SP_EP, F105_begin and CRC fields consti-
tute a message payload.

The reason why F104 is included in DATA_INK_BGNOS
1201 is described below in reference to the second embodi-
ment. Parameters related to smoothing filter are included in
the first message, DATAINK _BGNOS 1201, so that a device
that receives stroke object 210 can immediately determine
whether to apply smoothing filtering processing to the point
objects included in the stroke object 210 at the beginning of
the reception of the stroke object 210.

The DATA_INK_MVDOS 1203 message, outputted in
step S976 of FIG. 9, includes the message header including
a message type field (“MVDOS”) F101, the drawing area ID
field F102, and the stroke ID field F103. The DATA_
INK_MVDOS 1203 message also includes the second frag-
mented data (F105_moved) including point objects subse-
quent to those included in the DATA_INK_BGNOS 1201
message. For example, “F105_moved” field may contain
point objects p4~p8 of FIG. 8. Unlike the first data message,
the DATA_INK_MVDOS 1203 message does not include
the drawing style object 230 (F104) and is identified as a
subsequent (not first) type of data message (MVDOS) in
F101. The DATA_INK_MVDOS 1203 message includes the
same drawing area ID (F102) and the same stroke ID (F103)
as the first data message.

The DATA_INK_ENDOS 1205 message, outputted in
step S980 of FIG. 9, is the last data message for the stroke
object 210 and includes the last fragmented data of the
stroke object 210 (F105_end), which may be for example
point objects p9~p13 of FIG. 8. The DATA_INK_ENDOS
1205 message is identified as a last data message (ENDOS)
in F101 and includes the same drawing area ID (F102) and
the same stroke ID (F103) as the first data message. The last
data message includes a metadata object 250 in F109, which
includes non-drawing related information such as author
information.

The three types of data messages described above are
outputted to point “F” from the ink data communication
section 144 of the ink data processing device of FIG. 5. A
packet “G” in the last row of FIG. 12 is a packet that includes
all of these three types of data messages as a packet payload,
which is outputted to point “G” from the network commu-
nications section 112 (Tx, Rx) of the ink data processing
device of FIG. 5.

FIG. 13A illustrates a stroke object 210 subject to the
Catmull-Rom Curve interpolation operation, which is input-
ted via point “D” to the graphic processing section 300 of the
ink data processing device of FIG. 5. (The stroke object 210
of FIG. 13A may also be inputted via point “D” to the ink
data formatting section 140 as described above.) FIG. 13B
illustrates how the stroke object 210 of FIG. 13A is output-
ted from the graphic processing section 300 to point “H” to
be drawn (rendered) on the display 113 of the ink data
processing device of FIG. 5.

In FIG. 13A, the stroke object 210 includes point objects
pO~p13, which correspond to x0'~x13' illustrated in FIG. 8

US 9,448,648 B2

31

above. The stroke object 210 is subject to the Catmull-Rom
Curve interpolation operation, thus all of the point object
pO~p13 are used as control points for generating interpolated
curve segments which together form the curve shown in
FIG. 13A. For example, points pO~p3 are used as control
points to generate a curve segment between pl and p2,
points pl~p4 are used as control points to generate a curve
segment between p2 and p3, and so forth. As illustrated, the
resulting curve passes through all of the control points
pO~p13.

One characteristic of the Catmull-Rom Curve is that,
because each curve segment is fully defined by four control
points, the effect of moving one control point is local. For
example, FIG. 13A illustrates that a curve segment 1301
between p6 and p7 is defined by four control points, p5, p6,
p7 and p8. Moving one control point may impact at most
four curve segments and does not affect the rest of the curve
segments forming the curve. For example, moving p8 may
impact at most four curve segments of p6-p7, p7-p8, p8-p9
and p9-p10. The “local control” characteristic of the Cat-
mull-Rom Curve makes it suitable for supporting a slicing
operation on a stroke object 210, where it is desired for the
resulting two new stroke objects 210 to retain as much
(shape) information of the original stroke object 210 as
necessary with a minimum amount of data. In other words,
the “local control” characteristic allows each of the resulting
slices to retain the original shape with a minimum number
of control points (to fully maintain the shape of the curve
from one end to the other end). For example, when the stroke
object 210 of FIG. 13 A is sliced at a curve segment between
p6 and p7, the first slice needs to retain only control points
pO~p8 and the second slice needs to retain only control
points pS~p13. The Poly-Bezier Curve also has the “local
control” characteristic and thus is suited for supporting a
slicing operation. Unlike the Catmull-Rom Curve, however,
the Poly-Bezier Curve needs control points that are not
along the curve (i.e., the curve does not pass through all of
its control points). Having to calculate and store those
control points outside the curve is an extra calculation step
requiring storage space that is not required with the Catmull-
Rom Curve, in which all control points are provided by the
point objects of a stroke object 210. This difference makes
the Catmull-Rom Curve, which is computationally less
demanding, better suited for supporting real-time applica-
tions of ink data generation, manipulation, drawing, and
communication.

FIG. 13B illustrates an example of actual rendering
(drawing) of the stroke object 210 of FIG. 13 A as outputted
from the graphic processing section 300 at point “H” in FIG.
5. FIG. 13B illustrates a range 1309 of the actual drawing
that spans from the start position indicated by the start
parameter SP (“0.0”) of the starting curve segment 1305 to
the end position indicated by the end parameter EP (“1.0”)
of the ending curve segment 1307. Note that the first curve
segment 1305 to be drawn is between pl and p2 and not
between p0 and pl because p0 is used merely as a control
point for defining the curve segment between pl and p2.
Similarly, the last curve segment 1307 to be drawn is
between pl1 and pl12 and not between p12 and p13 because
pl3 is merely a control point used to define the curve
segment between pl1-p12.

<Ink Data Manipulation (Slicing)>

A slicing operation made possible by the systems and
methods of the present invention according to various
embodiments is now described in reference to FIGS. 14-19.

FIG. 14 is a flow chart of a slicing operation applied to a
pre-existing stroke object 210. The slicing operation is

10

15

20

25

30

35

40

45

50

55

60

65

32

executed cooperatively by the stroke object handling section
122 and the manipulation object handling section 128. The
illustrated example assumes a slicing operation as shown in
FIG. 4B, wherein the newly-drawn Stroke_j 403 slices the
pre-existing stroke_i 401.

First, the ink data generation section 120 (the stroke
object handling section 122) receives new pen event data
(“INPUT 17). In step S1401, two processing threads starting
from step S1403 and step S1405, respectively, are executed
in parallel.

In the first processing thread, in step S1403, the ink data
generation section 120 generates a stroke object (Stroke_j)
according to the process described in FIG. 9 above. In
parallel in the second processing thread, in step S1405, the
ink data generation section 120 (the manipulation object
handling section 128) determines whether manipulation
information (“INPUT 3”) is associated with the pen event
data (“INPUT 1) which is used by the first processing
thread to generate the new stroke object 210. For example,
the manipulation information (“INPUT3”) may indicate that
the associated stroke object 210 is to carry out a slicing
operation.

If there is no such “INPUT 3” (NO to step S1405), the
process proceeds to an end and the newly generated stroke
object (Stroke_j) is handled as a normal stroke object 210.
If there is “INPUT 3” associated with the stroke object 210
(YES to step S1405), the Stroke_j is treated as a manipu-
lation object 270 to implement a slicing operation on one or
more pre-existing stroke objects 210.

<Slicing Operation>

A loop starting from step S1407 through step S1423 is
repeated for each of the pre-existing stroke objects
(stroke_1~Stroke_j—1). In this example, the slicing opera-
tion embodied in the newly-generated Stroke_j is applied to
each of the pre-existing stroke objects 210. There are various
techniques that can be applied to skip strokes isolated, in
terms of positioning, from the manipulation object 270. For
example, the stroke object handling section 122 can main-
tain indices with stroke segments within an area. The indices
can be used by the manipulation object handling section 128
to skip the unnecessary intersection calculations.

Step S1407 sets up the loop.

In step S1409, the manipulation object handling section
128 determines whether the new Stroke_j 403 intersects a
pre-existing stroke_i 401 (i<j), as shown in FIG. 15A. FIG.
15 illustrates the new Stroke_j intersecting the pre-existing
stroke_i at a cross-point P_intersect_Mid between two con-
trol points p6 and p7 of the pre-existing stroke_i. In the
illustrated example, since the new Stroke_j has a width, the
cross-point is calculated as an intersection between a middle
line (shown in solid line passing through points P2, P3, P4)
of the new Stroke_j and the pre-existing stroke_i.

Returning to FIG. 14, when it is determined in step S1409
that the new Stroke_j does not intersect the pre-existing
stroke_i, it means that the slicing operation is not to be
applied to the pre-existing stroke_i. The process increments
i by 1 and determines whether the new Stroke_j intersects
the next pre-existing stroke_i+1.

When it is determined in step S1409 that the new Stroke_j
intersects the pre-existing stroke_i, the slicing operation of
step S1411 is applied to the pre-existing stroke_i.

In step S1413, as shown in FIG. 15B, the manipulation
object handling section 128 derives two intersecting points
P_intersect_[. and P_intersect_R between two edges (in
broken lines) of the new Stroke_j and the pre-existing
stroke_i, respectively, based on the calculated cross-point
P_intersect_Mid (55,100) and “Width” (3.58) of the new

US 9,448,648 B2

33

Stroke_j. In FIG. 15B, p6 is at (47, 100) and p7 is at (63,100)
for the pre-existing stroke_i, while P2 is at (60,110) and P3
is at (50,90) for the new slicing Stroke_j. As described
above, the cross-point P_intersect_Mid is calculated as an
intersection between line p6_p7 and line P2_P3. The width
of'the new Stroke_j along the p6_p7 direction can be derived
as “Width”/sin 6=4.0 (the “derived width”), where sin
8=(110-90)+sqrt ((60-50)"2+(110-90)"2). The derived width
of 4.0 is then used to calculate the two intersecting points
P_intersect_L. and P_intersect_R, by adding or subtracting
one half of the derived width to or from the cross-point
P_intersect_Mid (55,100). In the illustrated example
P_intersect_L is found to be at (53, 100) and P_intersect_R
is found to be at (57, 100). There might be additional
calculation that will take place in S1413. For example, if
stroke_i and Stroke_j are not flat in the intersection area,
then additional calculation should take into account the
actual curvature in calculation of P_intersect_L and P_inter-
sect_R.

In FIG. 14, in step S1415, the manipulation object han-
dling section 128 generates two instances of the stroke
object_i resulting from the slicing operation as shown in
FIGS. 16A and 17A, respectively. The two instances are of
“slice” type. The first slice of FIG. 16A includes control
points pO through p8 to define curve segments between
p2-p7, and the second slice of FIG. 17A includes control
points pS-p13 to define curve segments between p6-p12. The
first slice of FIG. 16A includes a hole segment 1801 between
p6 and p7, at which the stroke_i is sliced, as the ending curve
segment. On the other hand, the second slice of FIG. 17A
includes the hole segment 1801 as the starting curve seg-
ment. The first slice retains the default start parameter of
“0.0” for the starting curve segment pl_p2, but now needs
a new end parameter for its newly-created ending curve
segment p6_p7. Similarly the second slice retains the default
end parameter of “1.0” for the ending curve segment
pll_pl2 but now needs a new start parameter for its
newly-created starting curve segment p6_p7.

In step S1417, the manipulation object handling section
128 derives a new end parameter (new_EP1) value 303 for
the first slice of FIG. 16A, as shown in FIG. 18A. In FIG.
18A, the new end parameter 1803 (“new_EP1”) of the first
slice is a value that indicates the position of P_intersect_L.
(53,100) within the ending curve segment p6_p7 of the first
slice. The new end parameter 1803 may be an absolute value
(e.g., (53,100)), a relative value (e.g., +6 along X direction
from p6), or a ratio of a distance between p6 and P_inter-
sect_L. relative to a distance between p6 and p7 (e.g.,
6/16=0.375). A ratio is useful because it can be used without
further processing in interpolation calculations performed
by various sections, for example the graphic processing
section 300 in FIG. 5.

FIG. 16B illustrates a data structure of parameters that
define the first slice. The data structure includes the start
parameter of “0.0” (default value, in float type) as well as the
end parameter of “0.375” (ratio, in float type) derived in step
S1417 above. In FIG. 16B, line 11 indicates that the data
structure defines a “slice” object which, once finalized (or
committed), becomes a stroke object 210. Line 12
“slice_from Index” is an index value (e.g., integer) that
indicates the start point object number of the slice. In the
example of FIG. 16, the “slice_from Index” is “0” because
the first slice starts at point p0. Line 13 “slice_to Index” is
an index value (e.g., integer) that indicates the end point
object number of the slice, which is “8” in FIG. 16 because
the first slice ends at point p8 (the last point p8 is a control
point for the ending curve segment p6_p7).

10

20

25

30

35

40

45

50

55

60

65

34

Returning to FIG. 14, in step S1419, the manipulation
object handling section 128 derives a new start parameter
(new_SP2) value 301 for the second slice of FIG. 17A, as
shown in FIG. 18A. In FIG. 18A, the new start parameter
1805 (“new_SP2”) of the second slice is a value that
indicates the position of P_intersect_R (57,100) within the
starting curve segment p6_07 of the second slice. The new
start parameter may be an absolute value (e.g., (57,100), a
relative value (e.g., +10 along X direction from p6), or a
ratio of a distance between p6 and P_intersect_R relative to
the distance between p6 and p7 (e.g., 10/16=0.625).

FIG. 17B illustrates a data structure of parameters that
define the second slice. The data structure includes the end
parameter of “1.0” (default value, in float type) as well as the
start parameter of “0.625” (ratio, in float type) derived in
step S1419 above. In FIG. 17B, line 21 indicates that the
data structure defines a “slice” object which, once finalized,
becomes a stroke object 210. Line 22 “slice_from Index” is
“5” because the second slice starts at point p5 (the first point
pS is a control point for the starting curve segment p6_p7).
Line 23 “slice_to Index” is “13” because the second slices
ends at point p13.

Returning to FIG. 14, in step S1421, the manipulation
object handling section 128 finalizes (or commits to) the first
slice of FIG. 16B (first slice object 274) and the second slice
of FIG. 17B (second slice object 274) to render them into the
first newly-created stroke object 210 and the second newly-
created stroke object 210, respectively, and stores them in
the memory device 770. The finalizing step S1421 is a “M1
(Local)” operation that occurs between the manipulation
object handling section 128 and the stroke object handling
section 122, as shown in FIG. 6. At this point, the stroke
object handling section 122 may discard the first and second
“slice” objects and/or the original stroke object_i.

FIG. 16C illustrates a rendered (displayed) path of the
finalized first stroke object 210, and FIG. 17C illustrates a
rendered (displayed) path of the finalized second stroke
object 210. As shown in FIG. 16C, curve segments between
pl and p6 are fully displayed, but as for the ending curve
segment between p6 and p7, only a portion up to the end
point indicated by the end parameter 303 (0.375) is dis-
played. The portion from p6 to the end point indicated by the
end parameter 303 precisely follows the shape of the origi-
nal stroke object 210 because the newly-created first stroke
object 210 retains the same control points p5-p8 that define
the ending curve segment between p6 and p7 as included in
the original stroke object 210. Similarly, as shown in FIG.
17C, curve segments between p7 and pl2 are fully dis-
played, but as for the starting curve segment between p6 and
p7, only a portion starting at the start point indicated by the
start parameter 301 (0.675) is displayed. The portion from
the start point indicated by the start parameter 301 to p7
precisely follows the shape of the original stroke object 210
because the newly-created second object retains the same
control points pS-p8 that define the starting curve segment
between p6 and p7 as included in the original stroke object
210.

In FIG. 14, in step S1422, the manipulation object han-
dling section 128 may transmit the newly created first and
second stroke objects 210 to a reception device of a remote
user, as will be more fully described below in reference to
FIGS. 20 and 21. The transmission step S1422 is a “M2
(Remote)” operation as shown in FIG. 6, which occurs
between the manipulation object handling section 128, via
the ink data formatting section 140, and a reception device
of a remote user coupled to a network outside the ink data
processing section 100. Alternatively, in step S1422, the

US 9,448,648 B2

35

manipulation object handling section 128 may transmit the
two slice objects 274 instead of the newly created stroke
objects 210. In that case step S1421 will be performed on the
reception device. This will be fully described below in
reference to FIG. 20.

In step S1423, the loop process repeated for each of the
plurality of pre-existing stroke objects 210 is completed.

In step S1427, the manipulation object handling section
128 flushes (discards) all slice objects 274 (if not already),
which are created and used in the slicing operation step of
S1411 above.

The slicing operation described above in effect replaces
the original stroke object 210, which is sliced, with two new
stroke objects 210 resulting from the slicing operation. Thus,
after the two new stroke objects 210 are created, the original
stroke object 210 may be discarded.

In the embodiment described in FIG. 14, the new stroke
object_j associated with manipulation information (“INPUT
3”) is treated as a manipulation object 270 configured to
execute a slicing operation on one or more pre-existing
stroke objects 210. In other words, the stroke object_j is used
as a manipulation object 270.

In other embodiments, the slice objects 274 created dur-
ing the slicing operation step of S1411 in FIG. 14 may be
used as a manipulation object 270 to execute a slicing
operation on one or more pre-existing stroke objects 210
residing in one or more computers (10-1-1, 10-1-2,
10-3, . . .) with which the pre-existing stroke objects 210 are
shared. In this case the slice objects 274 are not discarded.
Use of the slice objects 274 as a manipulation object 270
will be more fully described below in reference to FIGS. 20
and 21A.

In still further embodiments, a hole segment object may
be created that defines the hole segment 1801 shown in
FIGS. 16A, 17A and 18A, and used as a manipulation object
270 that executes a slicing operation on one or more
pre-existing stroke objects 210. FIG. 18B illustrates a data
structure of parameters that define the hole segment object.
Line 01 indicates that the data structure defines a “hole
segment” object, which is different from a slice object 274
and a stroke object 210. Line 02 “hole_from Index” is an
index value (e.g., integer) that indicates the start point object
number of the hole segment, which is “6” in this example
because the hole segment is between p6 and p7. Line 03
“hole-end parameter” is “0.375” (ratio, in float type) derived
in step S1417 of FIG. 14, which indicates the end point of
the ending curve segment of the first slice created by the hole
segment 1801. Line 04 “hole_to Index” is an index value
(e.g., integer) that indicates the end point object number of
the hole segment, which is “7” in this example because the
hole segment is between p6 and p7. Line 05 “hole-start
parameter” is “0.625” (ratio, in float type) derived in step
S1419 of FIG. 14, which indicates the start point of the
starting curve segment of the second slice created by the
hole segment 1801. Use of the hole segment object as a
manipulation object 270 will be more fully described below
in reference to FIGS. 20 and 21B.

While in the above-described embodiments, P_inter-
sect_L is used as the new end point of the first slice and
P_intersect_R is used as the new start point of the second
slice, in other embodiments the same point may be used as
both the new end point of the first slice and the new start
point of the second slice. For example, for ease of calcula-
tion, P_intersect_Mid may be used as both the new end point
of the first slice and the new end point of the second slice.

According to the embodiments of the invention described
above, display of a sliced curve segment (e.g., the “hole

25

40

45

36

segment” 1801) is controlled by a new end parameter 303,
which defines an end point at which display of a first slice
ends, and by a new start parameter 301, which defines a start
point at which display of the second slice starts. Both of the
first and second slices retain data that fully define the
structure of the hole segment and merely limit what portion
of the hole segment is displayed as part of the first slice or
the second slice. Thus, these slices when rendered (dis-
played) precisely follow the shape of the original stroke
object 210. Further, because the slices retain the same data
(e.g., control points) that fully define the hole segment as in
the original stroke object 210, there is no need to recalculate
the positions of control points or calculate new control
points. The systems and methods of the present invention are
preferably used with a curve interpolation algorithm having
the “local control” characteristic as discussed above, such as
the Catmull-Rom Curve and the Poly-Bezier Curve. Then,
the slices resulting from a slicing operation need to retain a
minimum amount of data (e.g., a minimum number of
control points) to define the hole segment resulting from the
slicing operation.

FIG. 19 illustrates a sample file in the stroke file format
(SFF) containing the two newly-created stroke objects 210
as displayed in FIGS. 16C and 17C. FIG. 19 may be
compared to FIG. 11 which illustrates a sample original
stroke object file.

In FIG. 19, a broken-line box 1910 indicates a file
containing the first newly-created stroke object 210 of FIG.
16C. The first stroke object file contains points x0~x8
corresponding to point objects pO~p8 of FIG. 16C. The start
parameter field 1912 includes the default value of “0.0” and
the end parameter field 1914 includes the value of “0.375”
derived in step S1417 of FIG. 14. A broken-line box 1920
indicates a file containing the second newly-created stroke
object 210 of FIG. 17C. The second stroke object file
contains points x5~x13 corresponding to point objects
p5~p13 of FIG. 16C. The start parameter field 1922 includes
the value of “0.675” derived in step S1419 of FIG. 14 and
the end parameter field 1924 includes the default value of
“1.0.” The first stroke object file 1910 may be a rewritten/
modified instance of the original stroke object file (of FIG.
11), or may be duplicated from the original stroke object file
to form an independent copy. As used herein, a “newly-
created” file may mean either of these types of files. The
second stroke object file 1920 may also be a duplicated copy
of the original stroke object file, as shown in field 1921 of
FIG. 19.

FIG. 20 is a detailed flow chart of the ink data transmis-
sion processing at step S1422 of FIG. 14. In step 2012, the
ink data processing section 100 obtains, from the context
information (“INPUT 2”), information indicating (i)
whether a remote user exists who shares the ink data 200 (a
set of stroke objects 210) generated by the ink data process-
ing section 100, and (ii) a message type to use for transmit-
ting the ink data 200 to the remote user.

In step 2014, the ink data formatting section 140 of the ink
data processing section 100 determines, based on informa-
tion (i) above, whether the ink data 200 in the local device
shared with another remote computer. If no remote user or
computer using the ink data 200 currently exists, optionally
in step S2022, the ink data formatting section 140 may
buffer two newly-generated stroke objects 210 in Type D
message shown in FIG. 21D (which corresponds to the SFF
format file of FIG. 19). When a remote user later joins the
ink data generation session of the ink data processing section
100, the file formatting section 140 may send Type D
message to the remote user. At this time it is not necessary

US 9,448,648 B2

37

to send the slicing manipulation object_j itself because the
remote user, who did not view the slicing operation in real
time, need only receive the result of the slicing operation,
i.e., the two newly created stroke objects 210.

If it is determined in step S2014 that a remote user exists,
in step S2016, the ink data processing section 100 deter-
mines, based on information (ii) above, a message type to
use to transmit the ink data 200 to the remote user. A suitable
message type may be selected depending on the type of
manipulation operation supported by the reception device
(see FIG. 22) of the remote user, a tolerance for time delay
in a particular application, an available amount of transmis-
sion resources, etc. For example, when information (ii)
indicates that the reception device of the remote user does
not support any manipulation (e.g., slicing) operation, pro-
ceeding to step S2022, the ink data formatting section 140
buffers and transmits only the result of the slicing operation,
i.e., the newly-created stroke objects in Type D message to
the remote user.

In step S2016, if information (ii) above indicates that the
reception device of the remote user supports executing a
stroke object 210 as a manipulation object 270 to slice one
or more stroke objects 210 on the reception device, the
process proceeds to step S2020. In step S2020, the ink data
formatting section 140 may use the ink data communication
section 144 to transmit the manipulation (slicing) stroke
object_j in a message Type C as shown in FIG. 21C.

Type C message of FIG. 21C has a header including type
field F101, drawing area ID field F102, and stroke ID field
F103 that identifies the stroke object_j. The type field F101
indicates that the message is of a “slicer” type which
implements (executes) a slicing operation. In this example,
the “slicer” type indication in F101 constitutes the manipu-
lation information (“INPUT 3”) that indicates that the asso-
ciated stroke object_j is a manipulation object 270. The
payload portion of Type C message includes the manipula-
tion (slicing) stroke object_j containing point objects pl~pn.
One advantage of using Type C message to transmit the
stroke object_j as a manipulation object 270 is that it allows
for the same slicing operation to occur simultaneously, in
real time, at both the transmission side and the reception
side. This is because the transmission side, upon generating
the stroke object_j, can virtually simultaneously transmit the
stroke object_j with manipulation information (“INPUT 3”)
to the reception side so that both sides can then execute the
same manipulation stroke object_j simultaneously.

Referring back to step S2016 of FIG. 20, if information
(i1) above indicates that the reception device of the remote
user supports executing a slice object 274 or a hole segment
object as a manipulation object 270 to slice one or more
stroke objects 210 on the reception device, the process
proceeds to step S2018. In step S2018, the ink data format-
ting section 140 may use the ink data communication section
144 to transmit the slice objects 274 (FIGS. 16B and 17B)
as a manipulation object 270 in a message Type A as shown
in FIG. 21A. Alternatively, in step S2018, the ink data
formatting section 140 may use the ink data communication
section 144 to transmit the hole segment object (FIG. 18B)
as a manipulation object 270 in a message Type B as shown
in FIG. 21B.

Type A message in FIG. 21A has a header including type
field F101, drawing area ID field F102, and stroke ID field
F103 that identifies the stroke object_j. The payload portion
of Type A message includes one or more pairs of slice
objects 274 resulting from slicing one or more pre-existing
stroke objects 210 with the stroke object_j. FIG. 21A
illustrates two such pairs: slice (1st) and slice (2nd) in fields

10

15

20

25

30

35

40

45

50

55

60

65

38

F111_31 and F111_32, respectively, which resulted from
slicing pre-existing Stroke_3 with the stroke object_j; and
slice (1st) and slice (2nd) in fields F111_i1 and F111_i2,
respectively, which resulted from slicing pre-existing
Stroke_i with the stroke object_j (description of other pairs
is omitted). The type field F101 of Type A message indicates
that the message is of a “slicer” type which implements
(executes) a slicing operation. In this example, the “slicer”
type indication in F101 constitutes the manipulation infor-
mation (“INPUT 3”) that indicates that the associated pairs
of slice objects 274 form a manipulation object 270. A
reception device that receives Type A message extracts each
pair of slice objects 274 and finalizes the slice objects 274
in reference to the original (pre-existing) stroke object 210
to be sliced, to generate two new stroke objects 210 which
can then be drawn on a display. One advantage of using Type
A message to transmit slice objects 274 as a manipulation
object 270 is that the data size of slice objects 274 is
generally smaller than the data size of a slicing stroke object
210 (the stroke object_j) included in Type C message and the
data size of newly-created stroke objects 210 included in
Type D message.

Type B message in FIG. 21B has a header including type
field F101, drawing area ID field F102, and stroke 1D field
F103 that identifies the stroke object_j. The payload portion
of Type B message includes one or more hole segment
objects resulting from slicing one or more pre-existing
stroke objects with the stroke object_j. FIG. 21B illustrates
two hole segment objects: hole segment stroke_3 in field
F111_3 H, resulted from slicing pre-existing Stroke_3 with
the stroke object_j; and hole segment stroke_i in field
F111_iH, resulted from slicing pre-existing Stroke i with
the stroke object_j (description of other hole segment
objects is omitted). The type field F101 of Type B message
indicates that the message is of a “slicer” type which
implements (executes) a slicing operation. In this example,
the “slicer” type indication in F101 constitutes the manipu-
lation information (“INPUT 3”) that indicates that the asso-
ciated hole segment objects form a manipulation object 270.
A reception device that receives Type B message extracts
and executes each hole segment object in reference to the
original (pre-existing) stroke object 210 to be sliced, to
generate two new stroke objects 210 which can then be
drawn on a display. Similar to Type A message described
above, one advantage of Type B message to transmit hole
segment objects as a manipulation object 270 is that the data
size of hole segment objects is generally smaller than the
data size of a slicing stroke object 210 (the stroke object_j)
included in Type C message and the data size of newly-
created stroke objects included in Type D message.

FIG. 22 is a functional block diagram of an ink data
reception device configured to remotely receive ink data 200
via a network according to embodiments of the present
invention.

The reception device includes a network communications
section 310 (Rx, Tx), an ink data processing section 100R,
an application section 300-2, a graphic processing section
300R, a display 113R, and an operating system 400-2. In
exemplary embodiments, the ink data processing section
100R is embodied in libraries that realize the ink data
processing section 100 on the transmission side. Thus, the
reception device generally performs counterpart functions
corresponding to the functions performed by the ink data
processing section 100.

In FIG. 22, points “D,” “E,” “F_in,” “G” and “H”
correspond to the respective points in the ink data processing
section 100 on the transmission side. In FIG. 22, M2'

US 9,448,648 B2

39

(Remote) indicates a point at which a manipulation object
270 transmitted from M2 (Remote) on the transmission side
is received. M1' (Local) indicates a point that corresponds to
M1 (Remote) on the transmission side, where the processing
to finalize (commit to) slice objects 274 performed in step
S1421 of FIG. 4 is performed, except that in FIG. 22 the
slice objects 274 (or a manipulation stroke object 210 that
produces the slice objects 274) are not internally generated
but are received from the transmission side.

The network communications section 310 (Tx, Rx)
receives packets via a WAN or wireless/wired LAN inter-
face and extracts various ink data messages as described in
FIG. 12.

The ink data processing section 100R includes an ink data
formatting section 140R and an ink data generation section
120R. The ink data formatting section 140R corresponds to
the ink data formatting section 140 on the transmission side,
and similarly includes a recording format handling section
142R configured to receive ink data 200 in a recording-type
stroke file format (SFF) via point “E” and an ink data
communication section 144R configured to receive ink data
200 in a communication-type stroke message format (SMF)
via point “F_in.” The data communication section 144R
determines, based on a value contained in a header field
F101 of a received message (“INPUT 3”), whether a
received message includes a manipulation object 270, i.e., a
special type of stroke object 210 (e.g., SLICER type stroke
object), a slice object 274, or a hole segment object config-
ured to execute a manipulation (slicing) operation on one or
more pre-existing stroke objects.

The ink data generation section 120R corresponds to the
ink data generation section 120 on the transmission side.
Unlike the ink data processing device on the transmission
side, the reception device (which does not include an input
sensor 110) does not receive pen event data to generate a
stroke object 210. Instead, the ink data generation section
120R receives various objects such as stroke objects 210,
manipulation objects 270, drawing style objects 230 and
metadata objects 250. The ink data generation section 120R
uses a stroke object handling section 122 and a manipulation
object handling section 128 to process (e.g., manipulate) the
received stroke objects 210, and stores the manipulated
(transformed) stroke objects 210 in a memory device 770.

The graphic processing section 300R carries out process-
ing corresponding to that carried out by the graphic pro-
cessing section 300 on the transmission side. As shown in
FIGS. 13A and 13B, the graphic processing section 300R
reconstructs a stroke (path) by generating interpolated
curves according to a curve interpolation algorithm such as
the Catmull-Rom Curve algorithm using point objects con-
tained in a stroke object 210 as control points. The graphic
processing section 300R further controls the range (portion)
of'the stroke object 210 to be displayed in reference to a start
parameter and an end parameter defined for the stroke object
210. For example, if the start parameter is 0.5 and the end
parameter is 0.5, the graphic processing section 300R starts
to draw (display) the stroke object 210 from a midpoint of
its starting curve segment and stops displaying the stroke
object 210 at a midpoint of its ending curve segment. The
graphic processing section 300R also adds width, color, and
other graphical properties to the rendered stroke object 210
in reference to a drawing style object 230 received in
association with the stroke object 210.

The display 113R corresponds to the display 113 on the
transmission side. The application section 300-2 is sup-
ported by the operating system 400-2 and is dynamically or
statically linked to the libraries that realize the ink data

20

30

40

45

55

40

processing section 100R. The application section 300-2 may
include applications that are the same as, similar to, or
different from the applications supported in the application
section 300-1 on the transmission side.

FIG. 23 is a flow chart illustrating a reception processing
of'a manipulation (slicing) object, which may be performed
by the reception device of FIG. 22, according to embodi-
ments of the present invention.

In step S2301, the ink data formatting section 140R
receives ink data messages received via the network com-
munication section 310 and extracts the type of message
included in each message from the type field F101 included
in a message header (“INPUT 3”).

In step S2303, the ink data formatting section 140R
determines whether a message contains a regular stroke
object 210 or a manipulation object 270. As described
above, a manipulation object 270 may be any of a stroke
object 210, a slice object 274, or a hole segment object,
associated with manipulation information (“INPUT 3”).

A stroke object 210 may be in the stroke message format
(SMF) file as in FIG. 12 or in the stroke file format (SFF) file
as in FIG. 11. A manipulation object 270 is preferably in the
SMF file, as shown in FIGS. 21A-21C.

If it is determined that a regular stroke object 210 is
received, in step S2305, the stroke object handling section
122 adds the received stroke object 210 in the memory
device 770R.

If it is determined that a manipulation (slicing) object is
received, in step S2311, the manipulation object handling
section 128 extracts one or more manipulation objects
included in the received message and, in step S2313, gen-
erates a list of the extracted manipulation objects. For
example, if Type A message of FIG. 21A is received, the list
identifies the two pairs of slice objects 274 in fields F111_31,
F111_32, F111_i1, and F111_i2 as manipulation objects
(description of other pairs is omitted). If Type B message of
FIG. 21B is received, the list identifies the two hole segment
objects in fields F111_3 H and F111_iH as manipulation
objects (description of other hole segment objects is omit-
ted). If Type C message of FIG. 21C is received, the list
identifies the stroke object_j as a manipulation object 270.

The following steps S2315-S2318 will be repeated for
each of the manipulation objects included in the list.

In step S2315, the manipulation object handling section
128 determines a target stroke object 210 to which the
manipulation object 270 is to be applied. For example, in
case of Type A message of FIG. 21A, it is determined that
the manipulation object 270 in the form of the pair of slice
objects 274 in fields F111_31, F111_32 is applied to pre-
existing Stroke 3, and that the manipulation object 270 in the
form of the pair of slice objects 274 in fields F111_i1 and
F111_i2 is applied to pre-existing Stroke_i.

In step S2317, the manipulation object handling section
128 applies the manipulation object 270 to the target stroke
object 210 identified in step S2315 to carry out a manipu-
lation operation, and commits (finalizes) the manipulation
operation so as to generate fully-defined stroke objects. The
generated stroke objects are then stored in the memory
device 770R of the stroke object handling section 122.
Operation of step S2317 generally corresponds to operation
of step S1421 in FIG. 14. In short, committing or finalizing
a manipulation operation reflects the result of the manipu-
lation operation in resulting stroke objects.

In step S2318, the manipulation object handling section
128 determines whether all of the manipulation objects
identified in the list of step S2313 have been executed on

US 9,448,648 B2

41

their respective target stroke objects. If not, the process
returns to step S2315 to process the next (remaining)
manipulation object 270.

If all of the manipulation objects identified in the list have
been executed on their respective target stroke objects and
their manipulation operations have been committed (final-
ized) to generate a new set of stroke objects, in step S2319,
the manipulation object handling section 128 flushes the
slice objects 274 and hole segment objects (if any) used as
the manipulation objects.

While the ink data processing section 100 on the trans-
mission side and the ink data processing section 100R on the
reception side are described as a software library operating
on the operating system 400-1 or 400-2, the ink data
processing sections 100 and 100R may be realized in a
different manner, such as in an application-specific inte-
grated circuit (ASIC) or an IC.

Thus, according to the ink data processing method of the
first embodiment, it is possible to modify or manipulate
(e.g., slice) a portion of a stroke object 210, and transmit the
modification/manipulation to one or more other computing
devices, as illustrated in FIG. 91.

Second Embodiment

A second embodiment of the present invention is directed
to methods and systems for communicating (transmitting,
relaying, receiving and processing, and streaming) ink data
200, among multiple devices (transmission devices, relay
servers, reception devices) that share a common drawing
area. In particular, the methods and systems enable super-
imposing multiple layers of ink data 200 respectively gen-
erated by different devices within the common drawing area
real-time, in the right communication order and in a timely
manner.

The second embodiments of the invention are particularly
suited for realizing real-time collaboration applications, in
which multiple users can enter hand-drawn (freehand) input
to a common drawing area (or canvas) at the same time in
real time.

For use in real-time collaboration applications, the present
invention provides methods and systems capable of gener-
ating ink data 200 with a full set of attributes (color, trace or
stroke width, rendering (drawing) style, etc.), which can be
shared without perceivable time delay thanks to novel
communications/reproductions schemes in which transmis-
sion timings of fragments of ink data 200 are controlled.

According to one aspect, ink data 200 includes stroke
objects respectively generated (drawn) using different types
of' devices and a drawing style object 230 that characterizes
the stroke objects (e.g., what type of pen tip is used to draw
a stroke object), and the ink data 200 is rendered within a
common drawing area. Some applications such as real time
collaboration applications have strict (fast) time require-
ments while other applications do not have such strict time
requirements. Apparatuses and methods according to an
aspect of the invention are configured to transmit/relay/
receive the ink data 200 in a timely manner, in the right order
and in the right format, according to requirements of a
particular application in use.

According to one aspect, the present invention provides a
method implemented by a transmission device to commu-
nicate with multiple reception devices that respectively
share a drawing area with the transmission device, wherein
the transmission device transmits to the multiple reception
devices ink data 200 representative of traces of input opera-
tion detected by an input sensor of the transmission device.
The method includes generally three steps: (a) an ink data
generation step, (b) a message formation step, and (c) a

10

15

20

25

30

35

40

45

50

55

60

65

42

transmission step. The ink data generation step includes: (i)
continuously inputting pen even data (INPUT 1) generated
according to movement of a pointer, and generating frag-
mented data of a stroke object, wherein the stroke object
contains multiple point objects to represent a trace of said
movement of the pointer, the fragmented data being gener-
ated per defined unit T, and (ii) generating a drawing style
object 230 based on context information (INPUT 2) at a pen
down time corresponding to generation of the pen event data
at a beginning point of said trace, wherein the drawing style
object 230 defines a rendition form of said trace of the stroke
object. The message formation step includes: (i) generating
a first message that includes the drawing style object 230,
and (ii) generating one or more second messages subsequent
to the first message, the one or more second messages
including the fragmented data. Finally the transmission step
includes transmitting the first message and the one or more
second messages in sequence according to a defined com-
munications protocol.

According to another aspect, a relay method is provided
for receiving ink data 200 representative of traces of input
operation detected by an input sensor of a transmission
device and relaying the received ink data 200 to multiple
reception devices that respectively share a drawing area with
the transmission device. The method includes generally four
steps: (a) a reception step, (b) a control step, (c) a data
message relay step, and (d) a transmission step. The recep-
tion step includes receiving a control message including
information regarding the drawing area and receiving a data
message including the ink data 200 to be rendered in the
drawing area. The control step includes updating a connec-
tion list that lists communications addresses of the multiple
reception devices that share the drawing area. The data
message relay step includes: (i) determining whether to
permit updating of the drawing area based on a stroke object
210 included in the data message, (ii) if the updating is
permitted, generating a new data message to be relayed to
the reception device listed in said connection list directly or
via another relaying device, and (iii) if the updating is not
permitted, generating a reject message indicating that a
request for updating of the drawing area is rejected. Finally
the transmission step includes transmitting the new data
message in a communications packet to the reception
device.

According to a further aspect, the invention provides a
method of receiving ink data 200 including generally four
steps. The first step includes receiving a first fragment of a
stroke object 210 in a message associated with a first
fragment ID. The second step includes receiving a third
fragment of the stroke object 210 in a message associated
with a third fragment 1D, wherein the third fragment 1D is
not consecutive with the first fragment ID. The third step
includes interpolating a missing second fragment of the
stroke object 210 based on the received first and third
fragments of the stroke object 210 and displaying the
interpolated second fragment. The fourth step includes, after
receiving an end of the stroke object 210, transmitting a
request including a stroke ID of the stroke object 210 to
request retransmission of the stroke object 210 as a whole.

According to yet another aspect, a method is provided of
streaming ink data 200 including multiple stroke objects
using a server in which the ink data 200 is stored. The
method includes generally two steps. The first step includes
reading the stored stroke objects sequentially. The second
step includes transmitting the stroke objects from the server

US 9,448,648 B2

43

to one or more receiving devices at defined timings that
respectively correspond to sequential portions of the stroke
objects.

Description of the Second Embodiment

FIG. 1 described above in reference to the first embodi-
ment illustrates an overall system in which ink data 200 may
be generated and communicated (transmitted, relayed,
received, processed, streamed, etc.) according to the second
embodiment of the present invention. For example, Device
10-3 in FIG. 1 may combine (synthesize) the ink data 200
respectively outputted from Device 10-1-1 and Device 10-1-
2, in real time, using an application provided by Application
Service #2, which may be a real-time collaboration type
application. Device 3 may render (draw) on its screen the ink
data 200 outputted from Device 10-1-1 and Device 10-1-2 as
different layers that are superimposed on one another in real
time.

The ink data 200 generated and communicated amongst
different devices according to embodiments of the present
invention are shared by various types of devices, computers,
operating systems, or applications over communications
resources.

FIG. 25 is an entity relationship diagram of an informa-
tion model for the ink data 200. FIG. 25 differs from FIG.
2 in that the stroke object 210 of FIG. 25 need not include
startParameter 301 or endParameter 303, but otherwise is
the same as FIG. 2. The ink data 200 according to embodi-
ments of the present invention include a stroke object 210
(or stroke object set 202) (see FIG. 3A) and a drawing style
object (set) 230 including information needed to control the
shape and color of a stroke object 210 when rendered
(drawn, visualized, rasterized). FIGS. 3B and 3C, described
above in reference to the first embodiments, respectively
illustrate two rendering (drawing) results according to two
different drawing style objects 230 of the same stroke object
210 of FIG. 3A. The ink data 200 further include a metadata
object (set) 250 including non-drawing related information
that describes a stroke object 210, such as authorship, pen
1D, locally obtained date and time information, location
information obtained by GPS, etc. The ink data 200 still
further include a manipulation object (set) including infor-
mation needed to manipulate (e.g., select, rotate, slice) a
pre-existing stroke object 210. Such information is orga-
nized in the form of manipulation objects, each of which is
executable on a pre-existing stroke object 210 to effect
desired manipulation of the stroke object 210. Other
manipulation objects may include, for example, cropping
(deleting), erasing, copying, enlarging and shrinking
manipulation objects.

FIG. 3A illustrates a stroke object 210, which contains
multiple point objects (Point_1 . . . Point_n). The stroke
object 210 includes information that represents a trace of
movement of a pointer. The pointer may be a pen-type
implement or a finger. Specifically, the stroke object 210
includes coordinates of the multiple point objects (Point_1 .
.. Point_n) that form the trace. Each of the point objects may
be associated with attributes such as its radius, color, trans-
parency (opacity) value, etc.

The coordinates of the multiple point objects (Point_1 . .
. Point_n) are obtained or derived from suitably sampling a
pen event data (or pointer operation), which are generated
according to movement of a pointer, and interpolating the
sampled points as necessary. As described above in refer-
ence to the first embodiment, to represent the trace as a
smooth curve, suitable curve algorithms such as the Cat-
mull-Rom interpolation algorithm may be employed.

10

15

20

25

30

35

40

45

50

55

60

65

44

There are generally two methods for generating (X, y)
coordinates of multiple point objects. First, the points
derived per unit time from pen event data are outputted,
while the pen event data are being inputted, as points of “raw
value type.” Second, after all points forming a stroke are
entered, a higher-order function representative of a fitted
curve (a Catmull-Rom curve, a Bezier curve, etc.) for the
stroke is generated, and a minimum number of point objects
needed to express the fitted curve are obtained as points of
“optimized point type.” According to one embodiment of the
present invention, depending on the timing constraints on
ink data 200 communications requested by each application,
the two methods of generating (X, y) coordinates are selec-
tively switched.

As illustrated in the different rendering results of FIGS.
3B and 3C, each drawing style object 230 includes infor-
mation regarding the unique form in which the trace is
rendered (drawn or expressed) on a screen or display, i.e.,
how the trace appears on the screen or display. Thus, use of
different drawing style objects to render the same stroke
object 210 results in different renditions of the stroke object
210 in terms of how they appear. The form of a trace may
be defined by one or more of a shape of a point object (e.g.,
a circle in FIG. 3B and a flake or petal in FIG. 3C), width
of the trace (e.g., the radius of each circle in FIG. 3B or the
size of each flake in FIG. 3C), any angle or offset associated
with each point object (see FIG. 3C), color of the trace (or
colors of the point objects), transparency/opacity of the trace
(or of the point objects), texture of the trace (or texture of the
point objects), etc. The information needed to draw a stroke
object 210 is included in a drawing style object 230 asso-
ciated with the stroke object 210.

FIG. 26 is an overall communications system diagram
according to embodiments of the present invention. The
communications system includes a transmission device
10-1, a relay server 10-2, and multiple reception devices
10-3, 10-4 . . . 10-n, which all share and use a group of
library resources 10 as shown in FIG. 1. The relay server
10-2 can be also part of globally distributed peer-to-peer
network of relaying servers (similar to content delivery
network) for increased performance. The system of FIG. 26
is suited for implementing transmission, relay and reception
methods of ink data 200 to achieve real-time collaboration
according to embodiments of the present invention.

The transmission device 10-1 of FIG. 26 corresponds to
Device 10-1-1 or Device 10-1-2 of FIG. 1.

The transmission device 10-1 includes an input sensor
110, input processing section (not shown), ink data process-
ing section 1007, an application section 300-1, and a com-
munications section 112 (“Tx Rx”). Ink data processing
section 100T corresponds to 100T in FIG. 5 of the first
embodiment. The application section 300-1 includes one or
more user applications, which are linked to the ink data
processing section 100T and supported by the group of
library resources 10 (FIG. 1). In the illustrated embodiment,
the application section 300-1 executes a real-time collabo-
ration application #1 that utilizes a real-time communica-
tions function.

The relay server 10-2, typically a relaying server, embod-
ies and provides an ink data exchange service. In the
illustrated embodiment, the relay server 10-2 serves trans-
mission device 10-1 and reception devices 10-3, 10-4 . . .
10-7, which are remotely located from the relay server 10-2,
by exchanging or relaying ink data 200 in real time.

The relay server 10-2 includes a communications section
(510 Rx, 511 Tx), an ink data relay section 540, an appli-
cation control section 520, and a repository configured to

US 9,448,648 B2

45

store canvas data (or drawing area data), to be described
more fully below. According to an aspect of the invention,
the repository stores information regarding the latest state of
a drawing area (canvas), which is continuously updated, in
the stroke file format (SFF) as illustrated in FIG. 28. Upon
request from transmission/reception devices, the relay server
10-2 returns the latest state of the common drawing area to
the requesting devices such that they all can share the
up-to-date state of the drawing area (i.e., what the “canvas”
currently looks like). According to one aspect, the relay
server 10-2 absorbs differences in communications proto-
cols used by multiple devices, to permit communication and
exchange of ink data 200 amongst those devices.

The reception devices 10-3, 10-4 . . . 10-» each corre-
spond to Device 3 in FIG. 1, and include a communications
section (310 “Rx Tx”), an ink data processing section 100R,
a graphic processing section 300, and an application section
300-2. The application section 300-2 executes Application
#2, which utilizes the definition and communications pro-
tocol of the ink data 200 processed in the ink data processing
section 100R. Application #2 of the reception device may be
the same as Application #1 used by the transmission device
10-1, or may be different as long as both Applications #1 and
#2 share the same definition and communications protocol
of ink data 200.

The division among the transmission device 10-1, the
relay server 10-2, and the reception devices 10-3, 10-4 . . .
10-7, as shown in FIG. 26 is for ease of illustration only, and
the various functions of these devices may be partially or
fully consolidated, or may be further divided and distributed,
according to each application and implementation of an
embodiment of the present invention. For example, the
reception device 10-3 may be equipped to perform the ink
data processing functions (“ink data generation” 120T and
“ink data formatting” 1407 to be described in FIG. 27) of the
transmission device 10-1, or the transmission device 10-1
may be equipped to perform the ink data processing func-
tions (“ink data formatting” 140R and “ink data generation”
120R to be described in FIG. 31) of the reception device
10-3. In some implementations multiple transmission
devices exist, while in other implementations no transmis-
sion device exists. In the latter case, for example, the relay
server 10-2 retains ink data 200 in its repository and streams
the ink data 200 to one or more client reception devices 10-3,
10-4 ... 10-n

In FIG. 26, arrows in broken lines illustrate flow of ink
data control messages, such as control messages that set a
common drawing area (or canvas) on which the ink data 200
inputted via multiple devices are superimposed as multiple
layers. Names of the ink data control messages start with a
prefix “CTRL_".

Arrows in solid lines illustrate flow of ink data messages,
including the actual ink data 200 inputted via multiple
devices to be superimposed on one another in the common
drawing area. Names of the ink data messages start with a
prefix “DATA_INK_”.

“SMF”’s (Stroke Message Format) shown in FIG. 26 are
messages generated and arranged in packets in a transmis-
sion format, as illustrated in FIG. 34 to be described below.
Briefly, ink data 200 in a transmission format are suited for
real-time communication without perceived delay. For
example, point objects of the “raw value type” described
above may be used to form a stroke object 210 of the
transmission format.

“SFF” s (Stroke File Format) shown in FIG. 26 are
messages generated and arranged in a recording format, as
illustrated in FIG. 28 to be described below. Briefly, ink data

10

15

20

25

30

35

40

45

50

55

60

65

46

200 in a recording format are compressed and are suited for
storage. For example, point objects of the “optimized point
type” described above may be used to form a stroke object
210 of the recording format. As further example, in SMF
transmission format color information may be processed in
RGB while in SFF recording format color information may
be processed in YCC for compression efficiency.

In various embodiments of the invention, the transmission
format (e.g., SMF) is used to communicate and exchange ink
data 200 amongst multiple devices in real time, while the
recording format (e.g., SFF) is used to store the common
drawing area (canvas) in a repository (which may be sent to
each device upon initial access).

A broken-line arrow “A. CTRL_JOIN_REQ” is a mes-
sage issued when a transmission device 10-1 first joins an
editing session of a common drawing area provided by a
collaboration service. The transmission device 10-1 may be
the first device to join the common drawing area, or may be
a latecomer that joins an editing session already commenced
by other transmission devices. The broken-line arrow “A.
CTRL_JOIN_REQ” indicates a transmission direction of a
message that the transmission device 10-1 sends out, to set
a drawing area (or canvas) to be shared with the reception
devices 10-3, 104 . . . 10-z. The CTRL_JOIN_REQ mes-
sage may include or be associated with a message containing
information regarding the transmission device’s environ-
ment (e.g., a set of parameters that describe its transmission/
reception environment) to be negotiated with, or shared
with, the relay server 10-2.

For example, parameters that describe a transmission
device’s transmission/reception environment include com-
munications parameters such as a stroke transmission/recep-
tion unit (size), message retransmission control setting, etc.
(FI1G. 30A, 524-1), drawing parameters that define a pen tool
set, coordinates system, etc. (FIG. 30B, 524-2), and user
policy parameters such as priority over resource competi-
tion, block user list, etc. (FIG. 30C, 524-3).

A broken-line arrow “B. CTRL_JOIN_REP” indicates a
transmission direction of a response message that the relay
server 10-2 sends out, in response to the CTRL_JOIN_REQ
message. CTRL_JOIN_REP includes environmental data
necessary for the transmission device 10-1 to transmit its ink
data 200, and in particular, the environmental data may
include information regarding the latest state of the drawing

area (canvas) of the reception devices 10-3, 10-4 . . . 10-z.
A solid-line arrow “C. DATA_INK_BGNOS,”
“DATA_INK_MVDOS” . . . “DATA_INK_ENDOS” (see

FIG. 34) indicates a transmission direction of the ink data
200 that the transmission device 10-1 sends, as updating
messages to update the drawing area (or canvas), to the relay
server 102 at the timings and in the transmission format
pursuant to a defined communications protocol to be
described in detail later.

A solid-line allow “D. DATA_INK_BGNOS” and
“DATA_INK_MVDOS” indicates a transmission direction
of the ink data 200 processed by and sent out (broadcasted)
by the relay server 10-2 to the reception devices 10-3,
10-4 . . . 10-n, on respective communications lines.

FIG. 27 illustrates the transmission device 10-1 of FIG. 26
in a functional block diagram. The transmission device 10-1
includes a (touch/pen) sensor 110, an input processing
section 111, the ink data processing section 1007, the
application section 300-1, a network communications sec-
tion (Tx, Rx) 1127, a graphic processing section 300, a
display 113, and an operating system 400-1.

The sensor 110 has a function to detect a user’s hand-
writing motion or operation (via a pointer such as a pen and

US 9,448,648 B2

47

a finger) and generates an input data signal representative of
the detected handwriting motion. For example, an electro-
static sensor, a pressure-sensitive sensor, an electromagnetic
resonance (EMR) based sensor may be used.

The input processing section 111 receives an input data
signal that is typically dependent on a particular sensor
device and its driver running on an operating system 400-1,
converts it to “pen event data” that include sensed coordi-
nate positions and other information such as pointer pressure
information, and outputs the pen event data as “INPUT 1.”
The pen event data are still dependent on a particular sensor
device used to detect the handwriting operation input. The
input processing section 111 is typically provided by a driver
for the sensor 110 or a library that performs processing
corresponding to the sensor driver. For example, when an
electrostatic sensor is used, the input processing may include
processing to interpret a gesture based on continuously
entered input, such as palm-rejection processing. Since the
pen event data are sensor/device dependent, the pen event
data may or may not include pointer pressure information or
pointer tilt (angle) information, depending on whether the
sensor 110 has pressure/tilt detection function or not. The
configuration of the sensor 110 and the input processing
section 111 is not limited to that which is illustrated, and all
or part of the sensor 110 and the input processing section 111
may be provided in a digital stationery device such as a
pen-shaped device.

The ink data processing section 100T includes an ink data
generation section 120T and an ink data formatting section
140T. The ink data processing section 100T corresponds to
100T in FIG. 5 of the first embodiment. The ink data
processing section 100T is responsible for converting the
pen event data (“INPUT 1), which may be sensor/device
dependent, to ink data 200 that can be used and shared by a
variety of applications on a variety of devices.

The ink data generation section 120T retrieves or receives
the pen event data, which are sensor/device dependent, and
converts it to device-independent ink data 200, which is a
digital representation of ink that is applied (e.g., drawn,
smudged, deposited, etc.) on paper using a real pen. The ink
data generation section 120T corresponds to stroke object
handling section 122 in FIG. 7. The ink data generation
section 1207 retrieves the ink data (point objects p0O to pn-1
stored in a memory 770 in FIG. 7) per defined unit T, such
as a defined time unit (e.g., 5 msec) or a defined data size
unit, to generate a stroke object 210, or fragments (portions)
of the stroke object 210, that represents a trace entered by a
handwriting operation.

The ink data generation section 120T receives the pen
event data (“INPUT 1”) from the sensor 110, and also
receives context information (“INPUT 2”) from the appli-
cation section 300-1 (e.g., a real-time collaboration appli-
cation) or from an operating system (400-1).

The context information (“INPUT 2”) is information
regarding the context or environment of the pen event data
at the time when a first part of a stroke is drawn (i.e., at
“pen-down”). The context information is set by the appli-
cation section 300-1 typically prior to generation of the pen
event data by the sensor 110. For example, the context
information may include the type of pen tip used (e.g., brush,
crayon, pencil), stroke/trace colors (red, green, blue), trans-
parency (or opacity) value (alpha) of a pen stroke, stroke/
trace width, etc. The ink data generation section 120T
generates a drawing style object 230, which is used to draw
(render) a stroke object 210 on a display, based on the
context information (“INPUT 2”) at the timing of the start of
the pen event data (at S605 in FIG. 32, to be described later).

30

35

40

45

55

48

The context information (“INPUT 2”) also includes non-
drawing related information about pen event data, such as
author information, pen ID, date/time information, location
information, etc. Based on such non-drawing related context
information the ink data generation section 120T generates
a metadata object 250.

The ink data generation section 120T additionally
receives a manipulation information (“INPUT 3”) from the
application section 300-1. INPUT 3 specifies that the next
input from the sensor 110 is not to define a normal stroke
object 210, but is to define a manipulation object 270 that
embodies and executes a manipulating operation (e.g., slic-
ing, deleting, copying, enlarging, etc.) on a pre-existing
stroke object 210. When INPUT 3 is received, with respect
to one or more of pre-existing stroke objects #0-#i, the next
stroke object # j is formed as a manipulation object 270 (e.g.,
a slicing object) and its manipulating operation is applied.

The ink data formatting section 140T includes an ink data
communication section 144T and a recording format data
processing section 1427T. In general the ink data formatting
section 140T formats (e.g., places in transmission packets)
the fragmented data of a stroke generated per defined unit T
by the ink data generation section 120T. The ink data
formatting section 140T also formats drawing style objects
230, metadata objects 250 and a manipulation objects 270
generated by the ink data generation section 120T. The ink
data formatting section 14071 formats various objects and the
fragmented data of each stroke object 210 in messages and
in communications packets according to format selection
information (Fmt_Sel) received from the application section
300-1.

The ink data communication section 144T performs the
following functions when the format selection information
(Fmt_Sel) received from the application section 300-1 speci-
fies use of a transmission format (e.g., SMF) as an output
format:

1) Inputs a stroke object 210 generated by the ink data
generation section 1207 as fragmented (or complete)
data per defined unit T, and generates various types of
data messages (i.e., messages that start with prefix
“DATA_INK_” as in FIG. 34) according to parameters
implicitly defined or explicitly negotiated. (E.g., FIG.
30A, 524_1¢).

2) Inputs a drawing style object 230 generated by the ink
data generation section 1207 and adds the drawing
style object 230 (“F104” in FIG. 34) to a “first” data
message (“DATA_INK_BGNOS” in FIG. 34.)

3) Determines a unique stroke 1D of the stroke object 210,
and adds the stroke ID (“F103” in FIG. 34) to all data
messages which include the fragmented data of the
stroke object 210.

4) Adaptively performs retransmission processing (see
FIGS. 35A, 35B and 36A) or abort processing (FIG.
37) upon receiving a response message (“DATA_IN-
K_NACK” in FIG. 36A or “DATA_INK_REJOS” in
FIG. 37) according to the negotiated parameters (e.g.,
FIG. 30A, 524_1f, with or without 524_1a).

The recording format data processing section 1427T pro-
cesses the ink data 200 generated according to the applica-
tion section 300-1 into a recording format (e.g., SFF), which
is different from the transmission format. For example, the
ink data 200 in the recording format may be uploaded from
the transmission device 10-1 to the relay server 10-2 to
indicate a current state of a common drawing area (canvas),
to be shared (accessed) by multiple users of the reception
devices 10-3, 10-4 . . . 10-» upon initial access to a real-time
collaboration application. Instead of the recording format,

US 9,448,648 B2

49

on the other hand, the transmission format may be used to
communicate ink data 200 in real time between multiple
devices.

FIG. 28 illustrates a sample recording format for use in
embodiments of the present invention. The recording format
differs from the transmission format (of FIG. 34) in terms of
the types of data included/omitted, and the order and redun-
dancy of data.

Types of Data Included/Omitted

For example, when a manipulation object 270 is gener-
ated to modify preexisting stroke object 210, in the trans-
mission format a manipulation object 270 (e.g., slice object
274 as described above in reference to the first embodiment),
to transform the ink data 200 residing in one or more
computers is generated and transmitted. On the other hand,
in the recording format, it suffices to record only the state
after the manipulation (updating) has been completed, and
thus it is not necessary to retain the manipulation object 270
itself. Thus, the recording format example of FIG. 28 does
not include any manipulation object 270.

Order and Redundancy of Data

A metadata object 250 includes non-drawing-related
information about a stroke object 210, such as author
information, pen ID, etc., which is often the same for a
number of stroke objects 1-5 entered at the same time, for
example, when the same author using the same pen gener-
ates multiple stroke objects 1 through 5 in this order.

In the recording format, redundancy may be reduced
because the entire data content is known at the time of
formatting data in the recording format. In the illustrated
example, the same value of authorship may be applied to all
stroke objects 1-5, and thus the same value need not be
repeated 5 times. Drawing-related information to be
included in a drawing style object 230 may also include
redundancy in some cases where, for example, the same type
of pen tip shape (e.g., brush) is used to draw multiple stroke
objects. Thus, as another example, the same value of pen tip
shape may be applied to stroke objects 1, 3 and 5, where this
value need not be repeated 3 times in the recording format.
Similarly, when the same value of pen tip shape is applied
to stroke objects 2 and 4, the value need not be repeated in
the recording format. In this connection, it is not critical to
maintain the time sequential order of stroke objects (i.e., the
order in which they were entered) in the recording format.
Also, because each stroke object is fully completed when
being put into a recording format, the total number of point
objects that form a stroke object may be included in the
stroke object itself.

On the other hand, in the transmission format, it is difficult
to rearrange the time sequential order of the stroke objects
if real-time communication is of importance. In real-time
communication, typically it is necessary to transmit infor-
mation regarding stroke objects 1-5 in the time sequential
order as they are entered and generated. Also, when trans-
mitting fragmented data of a single stroke object, it is not
possible to know in advance how many point objects will be
included in the stroke object, and thus it may be necessary
to indicate the last fragmented data that completes the stroke
object as such (and the last fragmented data may include
information regarding the total number of point objects
included in the stroke object).

According to embodiments of the present invention, the
same amount of information may be included in less bytes
in the recording format than in the transmission format,
because the transmission format may need to have redun-
dancy and a rigid time sequential structure for the purpose
of achieving real-time communication without perceivable

20

35

40

45

50

time delay. Thus, for the purpose of memory space saving,
the latest drawing area information stored in the repository
of'the relay server 10-2 is preferably in the recording format,
which can then be accessed and retrieved by various devices
connected to the relay server 10-2 using a lesser amount of
transmission resources.

Referring back to FIG. 27, the network communications
section 112T (Tx, Rx) of the transmission device 10-1
generates communications packets (see FIG. 34), which
include the messages generated by the ink data processing
section 100T as payload, and outputs the packets via a
network interface connected to media (Ethernet, etc.)

Various communications protocols may be used based on
implicit or explicit (via negotiation) definition in view of
communications environment as necessary. For example, a
protocol that includes a built-in retransmission mechanism
such as TCP or HTTP(S) over TCP or SSL may be used
(FIG. 35A), or a protocol that itself does not offer a
retransmission mechanism such as UDP (or RTP/UDP) may
be used (FIG. 35B). Further, when UDP is used, either a
message retransmission mechanism may be employed (FIG.
36A) or a message retransmission mechanism is omitted for
the purpose of complying with time requirements of real-
time type applications (FIG. 36B). Also, it is possible to use
different communications protocols for control messages
and data messages, respectively. For example, it is possible
to employ a protocol with a retransmission mechanism to
transmit control messages shown in broken-line arrows,
while employing a protocol without a retransmission mecha-
nism to transmit data messages shown in solid-line arrows.

The application section 300-1 provides an application that
uses the ink data transmission method according to an
embodiment of the present invention. The application sec-
tion 300-1 issues the CTRL_JOIN_REQ, etc., via the net-
work communications section 112T (Tx), to the relay server
10-2 (in particular, 520 in FIG. 29) which manages the latest
status of the common drawing area (or canvas). The appli-
cation section 300-1 determines the drawing area (canvas)
on which to perform drawing using an input device 110.

The application processing section 300-1 processes and
provides to the ink data processing section 100T of the
transmission device 10-1 the following information:

*context information such as color information, pen tip
shape, authorship information, creation date and time
(INPUT 2),

*manipulation information that specifies that the incom-
ing input forms a manipulation object (INPUT 3),
and/or

*format selection information (Fmt Sel), which desig-
nates which one of a transmission format and a record-
ing format should be selected.

The application processing section 300-1 is capable of
receiving the ink data 200 generated by the ink data gen-
eration section 120T to output to both the remotely-located
reception devices (10-3, 10-4 . . . 10-z) and to the transmis-
sion device’s own local display or screen, if provided.

The graphic processing section 300 generates pixel data
based on the ink data 200. The graphic processing section
300 is capable of instantly drawing (rendering) the stroke
objects on the local display or screen, which may represent
the state of the common drawing area in which ink data 200
entered via multiple devices are superimposed as different
layers.

The ink data transmission device 10-1 according to
embodiments of the present invention determines the latest
(updated) state of a drawing area (canvas) for use, and
processes pen event data continuously to generate frag-

US 9,448,648 B2

51

mented (or complete) data of a stroke object 210 per defined
unit T (e.g., 5 msec). The ink data transmission device 10-1
further selects respective parts of context information (IN-
PUT 2) to generate an associated drawing style object 230
and a metadata object 250, generates a manipulation object
based on INPUT 3, and formats the generated objects in a
transmission format (e.g., SMF) for transmission to the relay
server 10-2 and to the reception devices 10-3, 10-4 .. . 10-7.
The defined unit T may be adaptively determined based on
a request from a collaboration application.

FIG. 29 is a block diagram of the relay (or streaming)
server 10-2. The relay server 10-2 provides a real-time
collaboration service by relaying fragmented data received
from one or more transmission client devices to one or more
reception client devices 10-3, 10-4 . . . 10-%. The functions
of the relay server 10-2 may be contained in a single device,
or may be distributed amongst multiple servers linked by a
network.

The relay server 10-2 includes a message reception sec-
tion 510, a drawing area management section 520, an ink
data relay section 540, and a message transmission section
511.

The message reception section 510 receives the control
messages and data messages, separately, from the transmis-
sion device 10-1. The messages are transmitted between the
transmission device 10-1 and the relay server 10-2 in
communications packets pursuant to a protocol (RTP/HTTP/
HTTPS(SSL)/TCP/UDP/Websocket, etc.) and in a message
type (fragmented, retransmission, maximum delay, etc.)
which may be predefined or may be defined based on
on-demand negotiation between the devices when the
devices first join the common drawing area. As illustrated,
the message reception section 510 may employ multiple
reception ports to distinguish between the control messages
and the data messages, though other methods may be used
to distinguish between the control messages and the data
messages. For example, a separate device (server) for pro-
cessing the control messages may be provided aside from
the relay server 10-2 that processes the data messages, or a
message header obtainable from a common reception socket
buffer may be used to distinguish between the two types of
messages.

The drawing area management section 520 manages the
status of the drawing area, in which ink data 200 inputted
from multiple devices and exchanged through the relay
server 10-2 are superimposed on one another as different
layers. The drawing area management section 520 includes
a service management section 522 and a drawing area
information management section 524.

The service management section 522 manages services
that employ the ink data relay method according to embodi-
ments of the present invention. The service management
section 522 cooperates with external servers (not shown) to
perform, for example, accounting functions, authentication
function of new users, functions to provide a subscription-
based viewing access to a common drawing area, to autho-
rize or not authorize each user to enter ink data 200 to a
common drawing area, etc., i.e., so-called AAA (Account-
ing, Authenticating, Authorizing) functions.

The drawing area information management section 524
manages drawing area information used to control opera-
tions of ink data relay methods. The drawing area informa-
tion includes generally three types of information (524_1 in
FIG. 30A; 524_2 in FIG. 30B; and 524_3 in FIG. 30C). The
drawing area information management section 524 manages
the three types of information, and based on the three types
of information updates, maintains and purges a user con-

10

15

20

25

30

35

40

45

50

55

60

65

52

nection list 541, which lists one or more users that are
connected to each drawing area (canvas).

FIG. 30A shows a set of communications parameters
524 _1 related to transmission and reception of ink data 200.
The communications parameters are exchanged amongst
communicating devices at the time of application startup, for
example. The communications parameters 524_1 may
include the following:

(524_1a) Packet Retransmission parameter defines
whether a retransmission mechanism is built in communi-
cations packets (or protocol stack) that are used to carry ink
data 200. For example, when using TCP (with retransmis-
sion support) for transmission while using UDP (without
retransmission support) for reception, TRUE is set for
transmission while FALSE is set for reception. This achieves
robust and reliable transmission of ink data 200 from a
transmission device 10-1 to a relay device 10-2, while at the
same time providing real-time, no-perceivable-time delay
streaming of the ink data 200 from the relay device 10-2 to
multiple reception devices 10-3, 10-4 . . . 10-z, for example.

(524_156) MTU (Maximum Transmission Unit), MSS
(Maximum Segment Size) parameter defines a MTU or MSS
depending on the type of media (e.g., Ethernet) to which a
transmission device is connected (e.g., 146 bytes).

(524_1c¢) Stroke Data Fragment Enable parameter sets
whether to fragment a stroke object 210 into fragments that
are each less than the stroke object 210 as a whole.

(524_1d) maximum Rx delay parameter sets the maxi-
mum allowed reception delay, in milliseconds (msec) for
example.

(524_1¢) Message Encryption scheme parameter defines
whether encryption is used and if used what encryption/
decryption algorithm is used.

(524_1f) Message Retransmission parameter defines, for
a protocol such as UDP that does not include a retransmis-
sion mechanism in the communications layer, whether to
implement retransmission in the message layer. For
example, the parameter is used to switch between using
retransmission in the message layer (FIG. 36A) and not
using retransmission in the message layer (FIG. 36B).

(524_1g) Audio Sync ENABLE parameter defines
whether audio and stroke data are synchronously reproduced
or not, and may be used to determine whether or not to
transmit ink data 200 in fragments or in a complete form (per
unit of stroke). For example, when audio and stroke data are
to be synchronously reproduced, the stroke data may be
fragmented with each fragment time-stamped such that each
fragment can then be synchronously reproduced with its
corresponding audio data.

(524_1z) Other Parameter set identifier defines a prede-
termined set of communications parameters.

FIG. 30B shows a set of drawing parameters 524_2
related to drawing (rendering) of ink data 200, and may
include the following:

(524_2a) Drawing area ID parameter sets a common
drawing area that a user device may join. In the illustrated
example, FIG. 30B shows “#123,” which is a common
drawing area (or canvas) ID. In some embodiments, the
relay server 10-2 may present to a user multiple IDs of
multiple canvases, in which collaborative editing is on-
going and from which the user device may select one to join.
In other embodiments when the user device is starting a new
drawing area, a unique drawing area ID may be assigned to
the newly started drawing area.

(524_2b) User local canvas offset, rotation, scale param-
eter(s) define a relationship between the global coordinate
system of the common drawing area and the local coordinate

US 9,448,648 B2

53

system of a user device used to join an editing session in the
common drawing area. For example, this allows two differ-
ent users to edit an upper portion and a lower portion of the
ink data drawing from two different angles, respectively.

(524_2d) Pen tool set ID parameter is an ID assigned to
a collection of pen parameters (pen tip shape, color, stroke
width, ink transparency/opacity, etc.) that together define
how a pen stroke appears on a drawing area. Multiple IDs
may be predefined for multiple collections, from which a
user may select one at the time of joining a collaborative
editing session on a common drawing area.

FIG. 30C shows a set of user policy parameters 524_3
related to policies that govern user access to a common
drawing area, including stroke data priority, filtering and
quality of service (QoS), and may include the following:

(524_3a) User account priority parameter sets priority to
stroke data in an ink data transmission service. In the
illustrated example, the parameter is set to “High,” which
means that the resource arbitration (or QoS) control 544 of
the relay server 10-2 will process and transmit the “High”
priority stroke data preferentially over other stroke data
whose priority is set to “Low,” for example.

(524_3b) Block user list includes other users that one user
wishes to block, i.e., from whom the user does not wish to
receive ink data 200. The list may also include those users
to whom the user does not wish to transmit ink data 200.
Instead of listing those users to DENY reception from or
transmission to, it is also possible to list those users to
ACCEPT reception from or transmission to.

The ink data relay section 540 relays the data messages
received from the transmission device 10-1 to one or more
other reception devices in reference to the connection list
541, which lists all the devices currently connected to the
drawing area into which the data messages are added
(drawn). The connection list 541 also lists what communi-
cations, drawing, and user policy protocols should be used
to communicate with each of the devices listed in the
connection list 541. In various embodiments, the ink data
relay section 540 handles (forwards or drops) a stroke object
message, not in the unit of a packet or in the unit of a
message, but as “one flow.”

The ink data relay section 540 includes a new stroke flow
detection section 542, a resource arbitration (or QoS) control
544, a feedback transmission section 546 (DATA_ToSelf),
and an all-cast transmission section 548 (DATA_ToOthers).

The new stroke flow detection section 542 checks the
header of a received message (Type field, F101 in FIG. 34)
to determine if the message includes a new stroke
(“DATA_INK_BGNOS”), or the message includes the frag-
mented data of the same (current) stroke object 210 for
which the relay processing has already started.

The resource arbitration (or QoS) control 544 controls
transmission resources in reference to the beginning end of
each stroke object 210 and if necessary in reference also to
the ending end of the stroke object 210. When processing the
beginning end of a new stroke (BGNOS), the resource
arbitration (or QoS) control 544 determines whether to
accept the new stroke into the drawing area (canvas) based
on various criteria. For example, if a stroke 1D of a stroke
object 210 newly received from a transmission device 10-1
is identical to one of the stroke IDs already used in the
drawing area, the resource arbitration (or QoS) control 544
may reject the newly received stroke object 210 having the
same stroke ID. As another example, if network resources
are found insufficient to forward or handle a new stroke
object 210 at a particular time, it rejects entry of newly
received stroke objects until the network resource condition

20

40

45

55

54

improves. This will prevent a situation in which a user starts
to enter a new stroke object 210 only to have to abort the
entry process before finishing the stroke object 210 due to
lack of sufficient networking or computing resources. As a
further example, if a particular device (user) is temporarily
denied an updating right, the resource arbitration (or QoS)
control 544 rejects any stroke objects generated by that
particular device. For example, resources may be preemp-
tively allocated to processing stroke data transmitted from a
user with “High” priority (524_3a in FIG. 30C) over stroke
data transmitted from a user with “Low” priority. The
resource arbitration (or QoS) control 544, when determining
to reject a new stroke received from any of the devices,
sends “REJECT” from the feedback transmission section
546. The resource arbitration (or QoS) control 544, when
determining to accept a new stroke received from a device,
sends (forwards) the new stroke to all of the other devices
(except for the device that itself has sent the new stroke) via
the all-cast transmission section 548.

According to various embodiments of the present inven-
tion, because each stroke object 210 is fragmented into
fragmented data and sent and relayed sequentially, remotely
located devices can share the stroke object 210 as it is
entered in real time without perceivable time delay. At the
same time, the resource arbitration (or QoS) control 544
performs a traffic control function to resolve any conflicts
amongst multiple users and to ensure that sufficient
resources are provided for every user that is granted a right
to enter a new stroke object 210 (while temporarily prevent-
ing other users to make any entry while the first user is
making an entry, for example).

The feedback transmission section 546 (DATA_ToSelf)
sends back a response only to the transmission device 10-1
that has sent a message to the relay server 10-2. For
example, when the resource arbitration (or QoS) control 544
decides not to allow entry of a new stroke object 210 by the
transmission device 10-1, the feedback transmission section
546 sends a reject message (see FIG. 37) only to the
transmission device 10-1.

The all-cast transmission section 548 (DATA_ToOthers)
sends a message to all of the devices currently connected to
the drawing area (as included in the connection list 541),
except the transmission device 10-1 that has sent a message
to the relay server 10-2. In the illustrated example, when a
message is received from the transmission device 10-1 and
is determined to be relay-able, the all-cast transmission
section 548 sends the message to all of the reception devices
10-3,10-4 . . . 10-n.

The relay server 10-2 thus receives ink data 200 from one
transmission device and selectively relays it to one or more
reception devices while optimally controlling efficient use of
the network resources as a whole.

FIG. 31 is a block diagram of the ink data reception device
10-3 of the ink data communications system of FIG. 26. The
reception device 10-3 includes a network communications
section 310 (Rx, Tx), the ink data processing section 100R,
the application section 300-2, the graphic processing section
300, and operating system 400-2.

The application section 300-2 running on the operating
system 400-2 includes an application that utilizes an ink data
reception method according to various embodiments of the
present invention. The application or type of operating
system may be the same as the application (or type of
operating system) of the application section 300-1 of the
transmission device 10-1, or may be different as long as both
applications allow entry, transmission and reception of ink
data 200 with each other through a common drawing area.

US 9,448,648 B2

5§

This is because the ink data 200, which is commonly defined
(standardized) can be transmitted and received indepen-
dently of a particular platform amongst different applica-
tions and operating systems. At the initiation timing of the
communication when the reception device 10-3 joins an
editing session of the common drawing area, the application
section 300-2 downloads the latest status of the drawing area
(canvas), in which other users have perhaps superimposed
their respective ink data 200 as different layers.

The application 300-2 may upload the ink data 200 that it
has generated to the drawing area at the relay server 10-2.
The ink data 200 generated locally by the reception device
10-3, perhaps prior to a collaborative editing session, may be
in the recording format, while the ink data 200 generated in
real time during a collaborative editing session may be in the
transmission format. Either the ink data 200 of the recording
format or the transmission format may be uploaded to the
relay server 10-2. In this connection, the application section
300-2 directs the graphic processing section 300 to output
the ink data 200 generated by the ink data generation section
120R to be superimposed in the drawing area.

The network communications section 310 (Tx, Rx) cor-
responds to the network communications section 112T (Tx,
Rx) of the transmission device 10-1. The network commu-
nications section 310 receives communications packets
(Pckt) via a network interface and extracts message(s) from
the payload portion of the packets. The reception protocol
used by the reception device 10-2 may be different from the
communications protocol used by the transmission device
10-1. For example, the transmission device 10-1 may
employ a protocol including retransmission mechanism,
such as TCP and HTTP over TCP, HTTPS over SSL, to send
messages to the relay server 10-2, while the relay server
10-2 may employ a not-so-reliable but suitable for streaming
protocol such as UDP and RTP over UDP protocols to send
messages to the reception device 10-2. Which communica-
tions protocol to use may be determined through negotiation
at the commencement of communication amongst the com-
municating devices.

The ink data processing section 100R includes the ink
data formatting section 140R and the ink data generation
section 120R, and extracts ink data 200 from the ink data
formatted in either the transmission format or in the record-
ing format. The ink data processing section 100R corre-
sponds to the ink data processing section 100T of the
transmission device 10-1.

The ink data formatting section 140R includes an ink data
communication section 144R and a recording format han-
dling section 142R. The ink data communication section
144R processes the ink data 200 as updated in the transmis-
sion format. Specifically, the ink data communication sec-
tion 144R extracts information (e.g., stroke ID) in each data
message and outputs the fragmented data, which are frag-
ments of a stroke object 210 divided per unit T defined by
the transmission side. The ink data communication section
144R also extracts the drawing style object 230 included in
the first of the messages for the stroke object 210, i.e.,
“DATA_INK_BGNOS” message. The drawing style object
230 contains information necessary to render (draw) its
associated stroke object(s).

The recording format handling section 142R receives and
processes the drawing area information in the recording
format, as stored (archived) in the repository of the relay
server 10-2, to reconstruct the latest drawing area.

The application 300-2 controls the ink data generation
section 120R to selectively receive ink data 200 from the ink

10

15

20

25

30

35

40

45

50

55

60

65

56

data communication section 144R or from the recording
format handling section 142R according to the format of the
ink data output/input.

For example, when the application first joins a collabora-
tive editing session at a common drawing area, a
“CTRL_JOIN_REQ” request is issued to retrieve the latest
drawing area information in a file in the recording format
(SFF). The retrieved ink data 200 of the latest drawing area
is in the recording format and, as such, may be processed at
the recording format handling section 142R. Subsequently
retrieved ink data 200 may be in the transmission format
(SMF), as in the form of “DATA_INK_BGNOS” and other
messages (DATA INK*) as shown in FIG. 34 and, as such,
may be processed at the ink data communication section
144R, one message (or messages representing one stroke) at
a time.

To achieve real-time processing of ink data 200, the ink
data communication section 144R outputs the fragmented
data of a stroke object 210, as they are received, to the
graphic processing section 300, instead of waiting to receive
all point objects (or the fragmented data) that form the stroke
object 210.

The ink data generation section 120R of the reception
device 10-3 performs reception processing corresponding to
the transmission processing of the ink data generation sec-
tion 120T of the transmission device 10-1.

The ink data 200 consisting of the stroke objects, each
consisting of multiple point objects, and the drawing style
object 230, metadata object 250, and manipulation object
associated with the stroke objects are all already generated
on the transmission side. Thus, they need not be newly
generated on the reception side. Rather, on the reception
side, the ink data generation section 120R stores and updates
the ink data 200 in the form usable by its application #2. For
example, the ink data generation section 120R transforms
the received ink data 200 in a first data type (e.g., integer
type) into the ink data 200 of a second data type usable by
application #2 (e.g., float type, double type) and provides the
transformed data to the application section 300-2 or to the
graphic processing section 300 used by the application
section 300-2.

The graphic processing section 300 of the reception
device 10-3 is similar to the graphic processing section 300
of the transmission section 10-1. The graphic processing
section 300 performs processing to generate pixel data based
on received ink data 200, to display the stroke objects on a
display screen 113 of the reception device 10-3.

FIG. 32 is a sequence diagram illustrating ink data com-
munications between the transmission device 10-1, the relay
server 10-2, and the reception device 10-3, according to
embodiments of the invention.

In FIG. 32, the functions/sections of the transmission
device 10-1, the relay server 10-2, and the reception device
10-3 are identified with the same reference numbers as used
in FIGS. 27, 29 and 31 above. The sequence illustrates a case
in which the transmission device 10-1 joins a real-time
collaboration session that has already started, in which ink
data 200 inputted by multiple users may be superimposed on
one another.

<Starting the Application Section 300-1>

In step S601, the transmission device 10-1 activates the
application section 300-1 that utilizes an ink data commu-
nications method according to embodiments of the present
invention. Activation of the application section 300-1 trig-
gers activation of the ink data generation section 120T and
the ink data formatting section 1407 in the ink data pro-
cessing section 100.

US 9,448,648 B2

57

First, the application section 300-1 of the transmission
section 10-1 issues a control message (CTRL_JOIN_REQ,
with or without parameters 524_1, 524 2, 524_3) that
specifies one of multiple drawing areas retained in the
drawing area management section 520 of the relay server
10-2 as a target drawing area (524_2a). The drawing area
management section 520 of the relay server 10-2 returns the
latest state of the specified drawing area in a recording
format (SFF), which may be highly compressed, back to the
transmission device 10-1 (CTRL_JOIN_REP). Then, the
application section 300-1 invokes the recording format
handling section 142T to reconstruct the latest state of the
drawing area based on the ink data 200 in the recording
format. The transmission device 10-1 thereby locally recon-
structs (or initially constructs) the up-to-date state of the
drawing area (or ink data current state), in which other
devices such as the reception devices 10-3 and 10-4 may
have already started drawing (entering) ink data 200 super-
imposed on one another. At this point, the transmission
device 10-1 enters into input-waiting state.

<Ink Data Transmission Processing>

The transmission device 10-1 executes ink data transmis-
sion processing by using detection of a “pen event data input
start” as a trigger. In step S605, the input processing section
111 of the transmission device 10-1 detects input of a stroke
beginning point. In FIG. 32, during the hatched duration “d”,
the pen event data are continuously inputted to the ink data
processing section 100T from step S605 to step S609, during
which one stroke is drawn starting at a stroke beginning
point and ending at a stroke ending point (hereinafter
referred to as “stroke unit”). During this time (duration d)
the input processing section 111 continuously outputs the
pen event data per unit T (every S608), for example every 5
msec, to the ink data generation section 120T.

The ink data processing section 1007 uses the start of the
pen event data input as a trigger to start the processing to
generate a drawing style object 230 based on context infor-
mation (INPUT 2) received from the application section
300-1. Specifically, based on the context information (IN-
PUT2) regarding the pen event data received from the
application section 300-1, the ink data processing section
100 generates a drawing style object 230, which includes
information used to draw (render) a stroke object 210 on a
common drawing area (canvas). The ink data processing
section 100 generates a drawing style object 230 by selec-
tively extracting a portion of the context data that is needed
for the reception side to render drawing. The drawing style
object 230 includes information such as color (red, green
blue) of a stroke (trace), pen tip type (brush, crayon, pencil),
transparency or opacity value (alpha), whether transparency
or opacity is allowed to vary within a stroke object 210,
stroke (trace) width (e.g., 0.2-6.0 points), whether a stroke
(trace) width is allowed to vary within a stroke object 210,
rasterization method, type of stroke texture, etc.

Generation of the drawing style object 230 is triggered by
detection of input of a beginning point of a stroke object 210
based on input of pen event data, i.e., at S605 in FIG. 32.
Thus, even when a user repeatedly changes the colors of a
pen prior to starting drawing operation, old (outdated) color
information will not be included in the drawing style object
230 and thus will not be transmitted to the relay server 10-2
to clutter transmission resources, for example.

The ink data formatting section 1407 (more specifically
the ink data communication section 144T) of the ink data
processing section 100T adds the generated drawing style

5

10

15

20

25

30

35

40

45

55

60

65

58
object 230 into the first data message (DATA_INK_BGNOS
1001) for the stroke object 210 being generated. (See FIG.
34).

The DATA_INK_BGNOS 1001 message includes infor-
mation indicating that the message is the first message for
the stroke object 210 (e.g., message type BGNOS, F101),
the drawing area ID (F102), stroke ID that is used to
uniquely identify the stroke object 210 within the drawing
area (F103), the drawing style object 230 (F104), and
optionally (if room permits) any of the fragmented data that
form part of the stroke object 210 (F105), followed by a
CRC error correction value.

After generating and including the drawing style object
230 into the first data message (DATA_INK_BGNOS 1001),
instead of waiting for receipt of “ACCEPT” message from
the relay server 10-2, the transmission device 10-1 continu-
ously generates, per defined unit T that is smaller than the
stroke unit, fragmented data, where multiple pieces of
fragmented data together form one stroke object 210 (S608).
Specifically, the ink data generation section 1207 processes
the pen event data forming one stroke (or trace) per the
defined unit T to produce ink data 200, and the ink data
formatting section 140T formats the fragmented data in
communications messages (“DATA_INK_MVDOS 1,2 ...
n” in FIG. 34) corresponding to the defined unit T and
assigns the stroke ID to each of the fragmented data in each
message, until an end of the pen event data input operation
is detected.

The defined unit T as used herein may be a unit of time,
which is the same as or greater than the sampling time unit
of the pen event data input, for example 5 msec. Thus, unit
T may be 5 msec, 50 msec, 200 msec, etc. Alternatively or
additionally, the defined unit T may be a unit of data size,
such as a fixed length of 256 bytes and 512 bytes. Data
(byte) size based unit T may be set smaller than the data
(byte) size of a message transfer unit (MTU) according to a
given communications protocol, as shown in FIG. 34. Fur-
ther alternatively, unit T may be dynamically changed and
switched between a time unit T and a data size unit T, for
example.

The unit T may be adaptively or selectively set by the
application section 300-1 depending on each application or
timing requirements. For example, for the purpose of allow-
ing a stroke object 210 to continuously and growingly
appear on the reception device 10-3 as if it is being “drawn”
in real time, the application section 300-1 may set the unit
T to correspond to a minimum unit that allows necessary
interpolation processing to occur between generated point
objects. As another example, for the purpose of reducing
communications overhead (amount of traffic) associated
with having to send the same message header information
(e.g., the stroke ID associated with every message for one
stroke object 210), the application section 300-1 may set the
unit T as large as possible, up to the unit of a stroke object
itself (the stroke unit). As another example, for the purpose
of reducing overall message in case there is a big difference
between pen event data input rate and display rate (e.g., pen
event input comes between 3-4 msec., but the display
refreshes every 15 msec.) then the application section 300-1
may set the unit T to match the display rate. In this case each
stroke fragmented message will contain data for more than
one point object.

FIG. 33 is a flow chart illustrating a method of determin-
ing unit T, which may be implemented in the transmission
device 10-1 and/or the relay server 10-2. In step S701, it is
determined whether parameter T is explicitly negotiated
between the transmission and reception devices or between

US 9,448,648 B2

59

the transmission/reception devices and the relay server 10-2.
If “YES,” the explicitly negotiated value is set as the unit T.
(Step S703). For example, the unit T may be negotiated and
defined according to parameters that set a stroke data to be
fragmented (S524_1c¢ “TRUE”) and set the maximum recep-
tion delay to be 100 msec (524_1d “100” msec). If, on the
other hand, the decision result of S701 is ‘“NO,” other
time-related requirements of the applications 300-1 and
300-2 are used to set unit T. For example, in step S705, it is
determined whether ink data 200 and other data (audio,
video, etc.) are to be synchronously reproduced. If “YES,”
in step S709, it is determined if “aggregation is requested,”
which will be described fully in reference to FIGS. 43 and
44 below. If “NO,” then in step S711, unit T that is smaller
than a unit corresponding to one stroke is set as the unit T.
Also, each (fragmented) data per the defined unit T is time
stamped for the purpose of synchronous reproduction with
other type(s) of data. If; on the other hand, the decision result
of S705 is “NO,” it is assumed that there are no particular
timing constraints, and unit T is set to its default value, such
as the unit of a stroke as a whole, for example.

Referring back to FIG. 32, when the input processing
section 111 of the transmission device 10-1 detects an end of
the pen event data input (S609), i.e., when it detects an end
of input operation of one stroke object 210, the ink data
processing section 100T generates a metadata object 250 in
step S611. The metadata object 250 includes information
regarding the generated stroke object 210 other than the
information used to draw (render) the stroke object 210 on
a display (which is included in the drawing style object 230).
For example, a metadata object 250 includes author infor-
mation, pen ID, etc.

<Ink Data Relay Processing>

The relay server 10-2 transfers the fragmented data for
one stroke object 210, as received in the data messages from
the transmission device 10-1, without modification to the
reception device 10-3.

The relay server 10-2 first receives the first message
(DATA_INK_BGNOS) of the stroke object 210 from the
transmission device 10-1. Then, in step S613 (ACCEPT) of
FIG. 32, the resource arbitration (or QoS) control 544
determines whether or not to allow new entry (updating) of
the stroke object 210 starting with its first message
DATA_INK_BGNOS as received. The sequence of FIG. 32
illustrates a case in which the resource arbitration (or QoS)
control 544 determines to allow entry of the stroke object
210 generated by the transmission device 10-1. Then, the
relay server 10-2 stores the stroke ID so that it can identify
and forward all subsequent data messages associated with
the same stroke ID by merely checking the message headers,
and forwards the first message DATA_INK_BGNOS to the
reception device 10-3.

The relay server 10-2 continues to forward subsequent
data messages (DATA_INK_MVDOS) for the same stroke
object 210, while checking the stroke ID included in their
headers, without having the resource arbitration (or QoS)
control 544 make independent determinations as to each of
the subsequent data messages. Thus, the resource arbitration
decision needs to be performed only once per each stroke.

In step S615, when the last one of the data messages for
the stroke object 210 (DATA_INK_ENDOS) is received, the
relay server 10-2 forwards the last message to the reception
device 10-3 and the resource arbitration (or QoS) control
544 releases the processing resources of the relay server
10-2 to forward the stroke object 210, which is fully
completed at this point.

25

40

45

55

60

As a post-processing operation following the completion
of transfer of one stroke object 210, in step S617, the stroke
object 210 is added to the drawing area as stored in the
drawing area repository of the relay server 10-2.

Because the relay (forwarding) process is performed per
each stroke object 210, the ink data 200 forwarded in the
transmission format in real time can be readily converted
into the recording format at the completion of the relay
process, to be stored in the repository in a compressed
recording format. This allows for the relay server 10-2 to
efficiently update the state of the common drawing area (or
canvas) shared by multiple devices, each time it completes
relaying a stroke object 210 generated by one of the multiple
devices to other device(s).

<Ink Data Reception Processing>

The reception device 10-3 first receives from the relay
server 10-2 the first data message (DATA_INK_BGNOS) of
the newly generated stroke object 210, which includes the
drawing style object 230. Using the information included in
the drawing style object 230, such as the color, pen tip type,
transparency/opacity, rendering method, etc., the reception
device 10-3 commences drawing (rendering) operation to
draw the received fragmented data of the stroke object 210
on its display.

The ink data processing section 100R continues to process
the fragmented data of the same stroke object 210 included
in subsequently received data messages, using the same
information included in the drawing style object 230, to
generate ink data 200 and output the ink data 200 to the
graphic processing section 300.

The graphic processing section 300 starts and continues
drawing (rendering) process of the fragmented ink data 200
as they are received. Steps S617-1 to S617-z in FIG. 32
respectively represent the rendered forms of the stroke
object 210 on the display at different times. FIG. 32 shows
that the stroke object 210 is continuously drawn as its
fragmented data are increasingly received and processed,
from state G1, G2, G3 where the stroke object 210 is only
partially, but growingly, drawn until state G4 where the
stroke object 210 is completely drawn, similarly to how a
user may see an actual pen stroke being drawn on paper by
another user.

FIG. 34 illustrates a sample transmission format of data
messages, arranged in communications packets suitable for
real-time communications amongst multiple devices accord-
ing to one embodiment of the invention. The illustrated
example uses a defined unit T that is smaller than a message
transfer unit (MTU) of a communications protocol defined
by a media interface (e.g., Ethernet) to which the transmis-
sion device 10-1 is connected.

The communication packet at the top of FIG. 34 shows a
communication packet outputted from the network commu-
nication section 112 of the transmission device 10-1.

“DATA_INK_BGNOS” in FIG. 34 shows the first data
message of multiple data messages for a new stroke object
210.

F101 field specifies the type of data message. F101 field
of the first data message, “DATA_INK_BGNOS;,” indicates
“BGNOS”, meaning that it is the first one of data messages
for a new stroke object 210.

F102 field includes a drawing area ID of a drawing area,
in which the new stroke object 210 is to be added or
superimposed.

F103 field includes a stroke ID of the stroke object 210.
The stroke ID is uniquely assigned to each stroke object 210
as used in the common drawing area. Various methods are
possible to assign a unique stroke ID to each stroke object

US 9,448,648 B2

61

210 per drawing area. For example, the (highest) stroke ID
value currently used in the drawing area may be incremented
to obtain a new unique ID to be assigned to a new stroke
object 210, or a pen ID value of a pen used to enter a new
stroke object 210 may be incremented to obtain a unique
stroke ID for the stroke object 210. Thus, the transmission
device 10-1 may independently assign a unique stroke ID to
a new stroke object 210 that it generates. Also, as discussed
above, the resource arbitration (or QoS) control 544 of the
relay server 10-2 prevents use of overlapping stroke IDs if
the transmission device 10-1 fails to assign a unique stroke
ID. Because the transmission device 10-1 may indepen-
dently assign a unique stroke ID to a new stroke object 210,
there is no need for communications sequencing that is
otherwise required to centrally assign unique stroke IDs to
stroke objects generated by different devices. Thus, it
becomes possible for the transmission device 10-1 to start
transmitting ink data 200 at a pen-down time, i.e., immedi-
ately after a user starts to draw a stroke.

F104 field includes a drawing style object 230, or a set of
drawing parameters included in the drawing style object 230
which are all related to how to draw (or render) a stroke
object 210. The parameters may include, for example, a
shape parameter (a circle in FIG. 3B or a flake/particle in
FIG. 3C), a shape radius or size, the minimum and maxi-
mum values of a shape radius or size, pen pressure or pen tilt
information (which impacts how a stroke drawn with that
pen pressure or pen tilt will appear on a display), etc.

In some embodiments, the entire set of drawing param-
eters is included in F104 field. In other embodiments, one or
more sets of drawing parameters (or one or more “drawing
style objects”) may be shared between the transmission
device 10-1 and the relay server 10-2 (and the reception
device 10-3) in advance, and only a parameter-set ID (or a
drawing style object ID) may be included in F104 field to
specify which set of drawing parameters is to be used to
render the stroke object 210. For example, frequently used
parameter settings, such as a limited number of combina-
tions of commonly-used pen tip types (pencil, brush, pen)
and commonly-used colors may be pre-defined, with each
setting given a unique ID, and these setting IDs may be
included in F104 field to communicate how the stroke object
210 is to be rendered (drawn) on a display. The parameter
settings may be explicitly negotiated between devices at the
time of initial negotiation, or may be implicitly defined as
part of a system protocol.

F105 field includes the first fragmented data out of a
plurality of fragmented data that together form one stroke
object 210. F105 field of the first data message includes the
beginning coordinate position of the stroke object 210, for
example. While FIG. 34 shows the first fragmented data (in
F105) as included in the first data message (DATA_
INK_BGNOS), the first fragmented data (F105) may be
included in the second data message if there is no sufficient
room in the first data message (which must include the
drawing style object).

“DATA_INK_MVDOS” 1, 2...data messages of FIG. 34
are all related to the same stroke object 210 and respectively
include the second fragmented data (F106), the third frag-
mented data (F107), and so forth. Unlike the first data
message, these subsequent data messages do not include the
drawing style object (F104) and are identified as a “subse-
quent” (not first) type of data message (MVDOS) in F101.
The subsequent data messages all include the same drawing
area ID (F102) and the same stroke ID (F103) as the first
data message.

20

25

30

40

45

55

62

“DATA_INK_ENDOS” data message is the last data
message for the stroke object 210 and may include the last
fragmented data of the stroke object 210 (F108). Also, the
last data message includes a metadata object 250 in F109,
which includes non-drawing related information such as
author information.

FIG. 35A illustrates a transmission format, specifically, a
communications packet including a data message
“DATA_INK_MVDOS,” which may be used in a commu-
nications protocol that includes a built-in data retransmis-
sion mechanism, such as TCP. On the other hand, FIG. 35B
illustrates a communications packet that may be used in a
communications protocol that does not include a built-in
data retransmission mechanism, such as UDP. Unlike the
data message format of FIG. 35A, the data message format
of FIG. 35B for use in a protocol without a retransmission
mechanism may include an additional field F110 which
includes a sequence ID uniquely assigned to each data
message. The sequence ID may be used to detect a message
loss to trigger/request retransmission.

Specifically, FIG. 36A is a sequence diagram of a sample
data retransmission process which uses sequence 1D, and
which is suitable for implementation in a communications
protocol, such as UDP, which does not include a data
retransmission mechanism. For example, FIG. 36A applies
when the transmission side’s packet retransmission param-
eter (524_1a) is set to “FALSE” and the message retrans-
mission parameter (524_1f) is set to “ENABLE.” The
hatched duration “d” corresponds to duration d in FIG. 32.

FIG. 36A shows that the first, second, and fourth data
messages respectively associated with sequence 1D #456,
#457, and #459, transmitted from the transmission device
10-1, are successfully received at the relay server 10-2. FIG.
36A also shows that the third data message associated with
sequence ID #458 has been lost somewhere in the network
between the transmission device 10-1 and the relay server
10-2 and not received by the relay server 10-2.

The relay server 10-2, at time T1 when the third data
message associated with sequence 1D #458 is expected but
not received and instead the fourth data message associated
sequence 1D #459 is received, detects that the third data
message associated with sequence ID #458 is lost. The relay
server 10-2 then issues a Negative Acknowledgement
(NACK; DATA_INK_NACK) message including sequence
ID #458 to indicate that the third message associated with
sequence ID #458 was not received.

The transmission device 10-1, at time T2 when the NACK
message is received, detects that the third data message
associated with sequence 1D #458 was lost and starts the
retransmission processing to retransmit the third data mes-
sage associated with sequence 1D #458 and subsequent data
messages that follow sequence ID #458 (i.e., #459,
#460 . . .). One reason for retransmitting all subsequent data
messages, not just the lost data message, is to continue
transmission of fragmented data of a stroke object 210 in a
time sequential manner to avoid any perceivable time delay.
Another reason is that when a data message is lost it is likely
that data messages subsequent to that lost data message are
also lost.

According to the retransmission processing method
described above, even when a protocol that does not include
a retransmission mechanism is used, it becomes possible to
ensure that all data messages (or data packets) necessary to
form one stroke object 210 are successfully received. While
the retransmission processing method is described above as
occurring between the transmission device 10-1 and the

US 9,448,648 B2

63

relay server 10-2, the method may be similarly implemented
between the relay server 10-2 and the reception device 10-3.

FIG. 36B shows another example of message retransmis-
sion.

Similar to FIG. 36A, the hatched duration “d” corre-
sponds to duration d in FIG. 32. FIG. 36B applies when the
transmission side’s packet retransmission parameter
(524_1a) is set to “FALSE” and the message retransmission
parameter (524_1f) is set to “DISABLED.” The message
retransmission parameter may be set to “DISABLED” when
there is little tolerance for message transmission delay (i.e.,
when there is a strict requirement not to have any perceiv-
able transmission delay), regardless of whether message
retransmission is possible or not.

As in FIG. 36A, in FIG. 36B also, the first, second, and
fourth data messages respectively associated with sequence
1D #456, #457, and #459, transmitted from the transmission
device 10-1 (or the relay device 10-2 on the transmission
side) are successfully received at the relay server 10-2 (or
the reception device 10-3). The relay server 10-2 at the
reception side, at time T1 when the third data message
associated with sequence ID #458 is expected but not
received and instead the fourth data message associated with
sequence 1D #459 is received, detects that the third data
message associated with sequence ID #458 is lost. There-
after, at time T2B, without issuing a retransmission request,
the reception side performs interpolation processing (or
error concealment processing) (S1205) to supplement or
interpolate a missing portion of the data corresponding to the
lost data message associated with sequence 1D #458 based
on the successfully received messages associated with
sequence 1D #456, #457, and #459, to thereby achieve
continuous, uninterrupted display processing. At time T3B,
processing of the last data message associated with sequence
1D #461 is completed. Thereafter, at time T4B, the reception
side issues a DATA_INK_ALLOS_REQ message 1503 (see
FIG. 39B) using the received stroke ID. The transmission
side 10-1 (or 10-2) then transmits a DATA_INK_ALLOS
message 1501 (see FIG. 39A), which is a message that
includes the identified stroke as a whole. The reception side
10-2 (or 10-3), at time T5B, uses the received
DATA_INK_ALLOS message 1501 to perform data correc-
tion of the supplemented or interpolated missing portion of
the data, as necessary.

FIG. 36C illustrates a problem to be addressed in the
interpolation processing (error concealment processing) at
step S1205 of FIG. 36B. It is assumed that the messages
#457, #458 and #459 form one complete stroke data. In FIG.
36C, the message #456 includes control positions P4571,
P4562 and P4563. The black-square position P4561 is a
stroke beginning position and includes the position’s abso-
lute coordinate, which is (100, 0) in the illustrated example.
In the figures, black square positions are associated with
absolute coordinates (to be referenced). On the other hand,
the black-circle position P4562 is associated with a differ-
ence (offset) relative to an absolute coordinate or a coordi-
nate of an immediately preceding position to be referenced.
In the illustrated example, the position P4562 is at Rel (+20,
0), meaning that it is located +20 horizontally and +0
vertically relative to the absolute coordinate (100, 0) of
P4561. The black-circle position P4563 is at Rel (+20, 0)
relative to the immediately preceding black-circle position
P4562. The message #457 includes three positions P4571,
P4572 and P4573, each at Rel (+20, 0) relative to its
immediately preceding position. As in FIG. 36B, assume
that the message #458 is not received at the reception side.
Then, the cross-hatched beginning position P4591 of the last

25

40

45

64

message #459 cannot be determined because the position
P4591 only includes relative offset information, which is not
useful unless there is a reference position.

The cross-hatched beginning position P4591 may be
determined by various methods according to embodiments
of the present invention. A first method according to an
embodiment of the invention involves linear prediction
performed at the reception side, to be described still in
reference to FIG. 36C. For example, when messages are
transmitted per 50 msec, the presumed trajectory of portions
in a missing message can be predicted based on the speed
and acceleration of the position coordinates that are already
obtained. In FIG. 36C, the stroke has advanced a total of Rel
(+60, 0) from P4563 (the last control position of the message
#456) to P4573 (the last control position of the message
#457), and thus, it can be predicted that the last control
position of the missing (lost) message #458 has also
advanced Rel (+60, 0) relative to P4573.

FIG. 36D illustrates a second method to obtain the cross-
hatched beginning position P4591 according to an embodi-
ment of the invention. In this method, the transmission side
may switch to include an absolute coordinate in the begin-
ning control position of each one of the fragmented mes-
sages, as indicated by the black-square positions P4561,
P4571 and P4591. In one embodiment, the transmission
device 10-1 may select to implement this method if a) output
in a format different from the recording forma is requested,
and b) one or more of the following conditions is met: (i)
stroke fragmentation is used (“StrokeData fragment Enable”
is “TRUE” in 524_1); (ii) message retransmission is not
implemented in the message layer (“Packet Retransmission”
is “TRUE” in 524_la and “Message Retransmission” is
“DISABLED” in 524_1f); and (iii) there is an explicit
indication to include an absolute coordinate in each frag-
mented message. Though FIG. 36D shows that an absolute
coordinate is included in every fragmented message, the
frequency with which to include absolute coordinates may
be varied. For example, communications protocol reporting
such as IETF RFC3550 and RTP reporting may be used to
vary the inclusion frequency of absolute coordinates at the
transmission side based on the reception quality detected at
the reception side.

A third method to obtain the cross-hatched position P4591
is backward confirmation that may be used together with the
linear (forward) prediction of FIG. 36C. In FIG. 36E, unlike
the case of FIG. 36C, the last control position P4593 of the
last message #459 is square shaped and contains its absolute
coordinate, (333, 0) in the illustrated example. When loss of
a message (#458) is detected, the reception side performs
backward confirmation of the cross-hatched circle position
P4591 based on the last control position P4593 of the last
message #459 including an absolute coordinate. In the
illustrated example, the cross-hatched position P4591 is
calculated backward from the last control position P4593
(333,0), via P4592 by Rel (-20, 0) and to P4591 by another
Rel (=20, 0), to be (293, 0).

FIG. 36F illustrates the supplementing or interpolation
processing (error concealment processing) performed at step
S1205 of FIG. 36B that uses the cross-hatched control
position P4591 obtained according to any of the methods
described above. A solid line 1201 indicates a partial stroke
data generated based on the message #457, and a white
circle P4573 indicates the last (ending) control position of
the fragmented stroke object 210 included in the message
#457. A solid line 1203 indicates another partial stroke data
generated based on the message #459, and the cross-hatched
P4591 indicates the first (beginning) control position of the

US 9,448,648 B2

65

fragmented stroke object 210 included in the message #459.
The missing data (corresponding to the lost message #458)
between the partial stroke 1201 and the partial stroke 1203
may be derived based on bi-directional prediction using
interpolation (or error concealment) both in a forward direc-
tion from the partial stroke 1201 as shown in a broken arrow
1207, and in a backward direction from the partial stroke
1203 as shown in another broken arrow 1209.

FIG. 36G illustrates one example of bi-directional pre-
diction processing. In this example, a line (or a fitted curve)
1221 connecting P4573 and P4591 is formed, and a mid-
point P_pred_midst is found that divides the line 1221 into
two equal line (or curve) segments 1223 and 1225 that may
be respectively expressed as approximate curve functions.

As described above, when a communications protocol
does not include a retransmission mechanism in the com-
munication layer (e.g., UDP), the system may adaptively
select between implementing message transmission in the
message layer as in FIG. 36A, or not implementing message
retransmission even in the message layer as in FIG. 36B.
Thus, when an application has strict timing requirements
such as when ink data 200 are to be synchronously repro-
duced with audio data, for example, retransmission is dis-
abled both in the communication layer and the message
layer so as to avoid any perceivable transmission time delay
and to achieve continuous, real time reception and display of
ink data 200.

FIG. 37 is a sequence diagram illustrating ink data com-
munications, in which a request to update a common draw-
ing area issued by a transmission device is rejected by a
relay server. For example, the transmission device 10-1
requests to add a new stroke object 210 to the common
drawing area, and the request is rejected by the relay server
10-2. The portion up to a point when the transmission device
10-1 sends the first data message (DATA_INK_BGNOS)
including the drawing style object 230 is the same as that
included in the sequence diagram of FIG. 32.

When the relay server 10-2 receives the first data mes-
sage, the ink data relay section 540 determines, in step S613
(DENY), to reject acceptance of the first data message based
on defined criteria, such as any limit on processing
resources, any limit on network resources, user access
policy, etc.

The relay server 10-2 then sends a rejection message
(DATA_INK_REJOS) from the feedback transmission sec-
tion 546 to the transmission device 10-1.

When the transmission device 10-1 receives the rejection
message in response to the first data message for a stroke
object 210, in step S610, the transmission device 10-1 aborts
the transmission processing and discontinues transmission
of subsequent data messages for the stroke object 210. In
other words, unless a rejection message is returned, the
transmission device 10-1 continues the transmission pro-
cessing to transmit all fragmented data for one stroke object
210 in successive data messages, without waiting for return
of an explicit ACCEPT message.

According to the ink data transmission methods of various
embodiments of the present invention, even when a long
stroke (trace) (which may take a few seconds to complete,
for example) is drawn by one device, a different device can
start to display the stroke as it is being drawn in a common
drawing area without having to wait for the completion of
the stroke. Various retransmission methods, which may be
built-in in a given protocol system or which may be addi-
tionally used in a protocol system without a retransmission
mechanism, may be used to ensure that a complete stroke
object 210 is successfully received at the reception side even

20

30

40

45

66

when the stroke object 210 is divided and sent in multiple
pieces of fragmented data. Also, when any of the data
messages for a stroke object 210 sent by the transmission
device 10-1 is refused/rejected by the relay server 10-2, the
transmission device 10-1 aborts the transmission process to
thereby avoid wasting precious processing resources and
network (transmission) resources.

FIG. 38 is a first modification example of the sequence
diagram of FIG. 32, in which the relay server 10-2 receives
fragmented data of a stroke object 210 from the transmission
device 10-1 and combines all of the fragmented data for the
stroke object 210 to be relayed to the reception device 10-3.
The transmission of fragmented data per defined unit T from
the transmission device 10-1 to the relay server 10-2 is the
same as shown in FIG. 32.

In this embodiment, the reception device 10-3 may nego-
tiate with the relay server 10-2 in advance to set reception
parameters that define how the reception device 10-3
receives ink data 200 relayed from the relay server 10-2. For
example, the reception device 10-3 sends a control message
(CTRL_JOIN_REQ 524_1) to the relay server 10-2, which
includes communications setting information such as infor-
mation indicating that the reception device 10-3 is to receive
ink data 200 per stroke unit, as opposed to per defined unit
T (524_1c¢ “StrokeData fragment Enable” value “FALSE.”)
The relay server 10-2 stores the communications setting
information received from the reception device 10-3 in the
drawing area information management section 524, such
that the relay server 10-2 will relay ink data 200 to the
reception device 10-3 per stroke unit (while it may relay ink
data 200 to other reception devices per defined unit T).

Then, as in FIG. 32, the transmission device 10-1 starts to
transmit fragmented data of a stroke object 210. The relay
server 10-2, in step S614 (buffering), continues to store the
fragmented data for the stroke object 210 until the last data
message (DATA_INK_ENDOS) is received. When the last
data message is received, the relay server 10-2 prepares and
sends a data message containing the entire stroke object 210
as well as its associated drawing style object 230, metadata
object 250, etc., and sends it as “DATA_INK_ALLOS” to
the reception device 10-3, for rendering at S617.

In this example, because the relay server 10-2 sends ink
data 200 concerning an entire stroke object 210 at once, the
number of point objects included in the stroke object 210 is
known. Thus, the ink data 200 may be transmitted in a
recording format, instead of in a transmission format, where
the recording format has less redundancy and thus may be
more compressed than the transmission format.

FIG. 39A is a sample data message format of
“DATA_INK_ALLOS,” in a recording format, which
includes all of the ink data 200 for one stroke object 210 as
well as an associated drawing style object 230, metadata
object 250, the number of point objects included in the
stroke object 210, etc. As shown, the message includes a
message CRC, and if the message size exceeds a given
communications packet MTU, the message is divided into
two or more communications packets (Pckt 1, Pckt 2,
Pckt_3, etc.) in the communications layer, which is below
the ink data message layer.

When transmitting ink data 200 per stroke unit, it may be
possible to use a communications protocol different from
that used for streaming fragmented data, in real time, per
defined unit T. For example, TCP or HTTP (which basically
relies on TCP), which includes a retransmission mechanism,
may be used to transmit ink data 200 per stroke unit, while

US 9,448,648 B2

67

a protocol without a retransmission mechanism, such as
UDP, may be used to stream fragmented data per defined
unit T.

The reception device 10-3 receives the ink data 200 per
stroke unit and, in step S617, applies graphic processing to
draw (render) the stroke object 210 in one rendition.

The modified sequence example of FIG. 38 may be suited
for use by a reception device 10-3 that may be in a network
environment in which traffic speed is slow and thus real-time
streaming wherein each stroke can be continuously received
may be difficult to achieve. In such cases, the reception
device 10-3 may opt to employ a more robust reception
method to receive stroke objects, one stroke object at a time,
without data loss.

FIG. 39B illustrates a sample data message format of
“DATA_INK_ALLOS_REQ” 1503, which is a message that
requests the stroke object 210 data of an entire stoke when
the stroke ID is known. The message may be used to request
retransmission of the entire stroke object data using the
stroke ID.

FIG. 40 is a second modification example of the sequence
diagram of FIG. 32, in which a stroke object 210 is trans-
mitted “as is” (i.e., non-fragmented) from the transmission
device 10-1 via the relay server 10-2 to the reception device
10-3.

In this embodiment, the transmission device 10-1 may
negotiate with the relay server 10-2 in advance to set
transmission parameters that define how the transmission
device 10-1 transmits ink data 200 to the relay server 10-2.
For example, the transmission device 10-1 sends a control
message (CONTROL_JOIN_REQ), which includes com-
munications setting information such as information indi-
cating that the transmission device 10-1 is to transmit ink
data 200 per stroke unit, as opposed to per defined unit T
(524_1c¢ “StrokeData fragment Enable” value “FALSE”).
The relay server 10-2 stores the communications setting
information received from the transmission device 10-1 in
the drawing area information management section 526, so
that the relay server 10-2 is controlled to receive ink data
200 from the transmission device 10-1 per stroke unit (while
it may receive ink data 200 from other transmission devices
per defined unit T).

As in FIG. 32, in FIG. 40, the transmission device 10-1
executes ink data transmission processing by using detection
of'a “pen event data input start” (e.g., “PenDown” event) as
a trigger. Specifically, in step S605, the input processing
section 111 of the transmission device 10-1 detects input of
a stroke beginning point. In FIG. 40, the pen event data are
continuously inputted to the ink data processing section
100T from step S605 to step S609 at the input processing
section 111 (and correspondingly from S607 to S611, col-
lectively S608B, at the ink data generation section 1207T),
during which one stroke is drawn starting at a stroke
beginning point and ending at a stroke ending point.

The ink data processing section 100T of the transmission
device 10-1 generates a drawing style object 230 based on
context information (INPUT 2) using the “pen event data
input start” (e.g., “PenDown” event) (S605) as a trigger.

The ink data formatting section 140T of the transmission
device 10-1 may then format the first data message
(DATA_INK_BGNOS) to be transmitted to the relay server
10-2, which the relay server 10-2 may determine to accept
(S613(ACCEPT)) or reject. The first data message in this
case is sent to confirm whether the relay server 10-2 is
capable of accepting the ink data 200 from the transmission
device 10-2 and, as such, need not include the coordinate of
the beginning point of a stroke object 210, for example.

20

25

40

45

55

68

As long as a rejection message (NACK) is not received
from the relay server 10-2, the transmission device 10-1
formats the ink data 200 for an entire stroke object 210 in a
message “DATA_INK_ALLOS,” which includes the entire
stroke object 210 as well as its associated drawing style
object 230, metadata object 250, etc., and sends it to the
relay server 10-2.

When transmitting ink data 200 per stroke unit, it may be
possible to use a data format different from that used to
transmit ink data 200 per defined unit T. For example, the ink
data 200 per stroke unit may be transmitted in a recording
format, while the ink data 200 that are fragmented per
defined unit T (smaller than stroke unit) may be transmitted
in a transmission format. Also, when transmitting ink data
200 per stroke unit, a communications protocol that provides
a retransmission mechanism may be used to achieve more
robust (reliable) transmission of ink data 200.

The relay server 10-2 receives a data message
(DATA_INK_ALLOS) including the entire stroke object
210 as well as its associated drawing style object 230,
metadata object 250, etc., and relays the same “as is”
(DATA_INK_ALLOS) to the reception device 10-3. To this
end, the reception device 10-3 may negotiate with the relay
server 10-2 in advance to set reception parameters that
define that the reception device 10-3 is to receive ink data
200 relayed from the relay server 10-2 per stroke unit, as
opposed to per defined unit T.

The reception device 10-3 receives the ink data 200 per
stroke unit and, in step S617, applies graphic processing to
draw (render) the stroke object 210 in one rendition.

The modified sequence example of FIG. 40 may be suited
for use by a transmission device 10-1 and a reception device
10-3, both of which may be in a network environment in
which traffic speed is slow and thus real-time streaming
wherein each stroke can be continuously transmitted and
received may be difficult to achieve. In such cases, the
transmission device 10-1 and the reception device 10-3 may
opt to employ a more robust transmission/reception method
to transmit/receive stroke objects, one stroke object 210 at a
time, without data loss.

FIG. 41 is a third modification example of the sequence
diagram of FIG. 32, in which the relay server 10-2 receives
a stroke object 210 from the transmission device 10-1 and
divides the received stroke object 210 into multiple pieces of
fragmented data to be relayed or sent to the reception device
10-3.

As in the previous sequence of FIG. 40, the transmission
device 10-1 generates and transmits a data message that
contains the ink data 200 for an entire stroke object 210, as
well as any associated drawing style object 230, metadata
object 250, etc., (DATA_INK_ALLOS) to the relay server
10-2. (See steps S607 through S611, collectively S608C, at
the ink data generation section 120T.)

During duration “d,” the ink data generation section 120T
of the transmission device 10-1 embeds in the ink data 200
respective times corresponding to the point objects derived
from pen event data to form the stroke object 210. For
example, when the application 300-1 is used in connection
with audio (e.g., 524_1g “Audio Sync ENABLE” parameter
“ENABLE”), the transmission device 10-1 inserts time-
stamping information to the ink data 200, per fragment, for
the purpose of synchronization with the reproduction tim-
ings of audio or other data. The times are embedded as
“reproduction times,” which the relay server 10-2 may use
in relaying the ink data 200 and the reception device 10-3
may use in reproducing (rendering) the ink data 200. For
example, a first portion (first point object) of the ink data 200

US 9,448,648 B2

69

generated by time T1 is to be relayed by the relay server 10-2
at a corresponding time D_T1, a second portion (second
point object) of the ink data 200 generated by time T2
(between T1 and T2) is to be relayed by the relay server 10-2
at a corresponding time D_T2, and so forth. Similarly, the
first through fourth portions (point objects) of the ink data
200 generated by times T1 through T4, respectively, are
reproduced (drawn) by the reception device 10-3 at corre-
sponding timings based on times T1 through T4, respec-
tively, starting at a “Graphic Processing Start” step of S617.

The relay server 10-2 receives the data message
DATA_INK_ALLOS from the transmission device, which
includes the ink data 200 for an entire stroke object 210 as
well as any associated drawing style object 230, metadata
object 250, etc., and divides the ink data 200 into multiple
pieces of fragmented data per defined unit T, similarly to
how the transmission device 10-1 generates the fragmented
data in the sequence example of FIG. 32. The defined unit
T is smaller than the stroke unit in this example. The relay
server 10-2 outputs the generated fragmented data at the
timings of D_T1, D_T2, D_T3, and D_T4, respectively, to
the reception device 3.

The reception device 10-3 receives and processes multiple
data messages including fragmented data, which together
form one stroke object 210, similarly to the reception device
10-3 in the sequence example of FIG. 32. Specifically, the
reception device 10-3 receives the first data message
DATA_INK_BGNOS, which signals that it is the first data
message of a series of data messages forming one stroke
object 210. The reception device 10-3 extracts the drawing
style object 230 contained in the first data message and uses
the information in the drawing style object 230 to start
rendering (drawing) the fragmented data of the stroke object
210. The ink data processing section 100R continues to
process subsequent fragmented data received in subsequent
data messages, and the drawing section 300 continues ren-
dering (drawing) the rest of the stroke object 210 in a
growing (increasing) manner. FIG. 41 shows that the stroke
object 210 is continuously drawn as its fragmented data are
increasingly received and processed, from state G1, G2, G3
where the stroke object 210 is only partially, but growingly,
drawn until state G4 where the stroke object 210 is fully
drawn. While in the above example the relay server 10-2
controls the relay transmission timings of the stroke data, it
is possible to have the relay server 10-2 transmit the stroke
data per unit of stroke and then have the reception device
10-3 control the reproduction timings of respective frag-
ments of the received stroke data. It is further possible to
have the relay server 10-2 retain the stroke data and start
streaming the stroke data to one or more reception devices
at a scheduled time. For example, the scheduled time can be
set to 0:00 on Jan. 1, 2020, and the reception devices may
start to receive a set of strokes depicting a message “Happy
New Year” to be drawn on their respective displays starting
at the scheduled time.

The various embodiments and modifications described
above can be combined to provide further embodiments.
Aspects of the embodiments can be modified to provide yet
further embodiments.

For example, in some embodiments, the reception device
10-3 may be configured to determine whether to accept or
reject a data message relayed from the relay server 10-2,
similarly to how the relay server 10-2 is configured to
determine whether to accept or reject a data message trans-
mitted from the transmission device 10-1. When the relay
server 10-1 receives a rejection message (DATA_INK_RE-
JOS), it updates the connection list 541 (FIG. 29) to indicate

10

15

20

25

30

35

40

45

50

55

60

65

70

that data messages from the transmission device 10-1 are not
to be relayed to the reception device 10-3 (while the same
data messages may be relayed to other reception devices).

In some embodiments, an origin of a common drawing
area coincides with an origin of a user-specific drawing area
(i.e., an origin of the display 113 of a transmission/reception
device). In other embodiments, an origin or the dimensions
of a user-specific drawing area need not be the same as an
origin or the dimensions of a common drawing area. FIG. 42
is a diagram illustrating the concept of a user-specific stroke
starting point, within a user-specific drawing area, relative to
an origin of a common drawing area.

In FIG. 42, point 1601 (0,0) indicates an origin of a
common drawing area, while point 1603 User_10-1 (0,0)
indicates an origin of a user-specific drawing area for
User_10-1 and point 1605 User_10-3 (0,0) indicates an
origin of another user-specific drawing area for another User
10-3. The vector from (0,0) to User_10-1 (0,0) is illustrated
to be (200, 30), and the vector from (0,0) to User_10-3 (0,0)
is illustrated to be (130, 260). At the initiation of commu-
nication, the transmission device 10-1 and the reception
device 10-3 share their respective origin vectors from the
origin of the common drawing area ((200, 30) and (130, 260)
in the illustrated example) with the relay server 10-2. Thus,
when the transmission device 10-1 sends Stroke_A starting
at Offset_1_1 (1607) to the relay server 10-2, the transmis-
sion device 10-1 needs to send only vector Offset_1_1,
which is the vector from User_10-1 (0,0) to the starting point
Offset_1_1. The relay server 10-2 can then combine the
received vector Offset_1_1 with vector (200, 30) to deter-
mine the position of the starting point Offset_1_1 relative to
the origin of the common drawing area.

The relay server 10-2 may then send the combined vector
from point 1601 (0,0), via point 1603 User_10-1 (0,0), to
Offset_1_1 (1607), which combined vector defining the
position of the starting point Offset_1_1 relative to the origin
of the common drawing area, to the reception device 10-3.
The reception device 10-3 may then determine the position
of the starting point Offset_1_1 relative to its own user-
specific drawing area having the origin of User_10-3 (0,0)
(1605) by subtracting its origin vector (130,260) from the
received combined vector. Alternatively, the relay server
10-2 may perform the subtracting operation to calculate the
position of the starting point Offset_1_1 relative to the origin
of User_10-3 (0,0) (1605) of the user-specific drawing area
of the reception device 10-3. When the relay server 10-2
sends the calculated position of the starting point Offset_1-1
relative to the origin of User_10-3 (0,0) to the reception
device 10-3, the reception device 10-3 can immediately
process the received position within its own user-specific
drawing area.

Similar process can be used when the reception device
10-3 enters and sends Stroke_B starting at Offset_3-1 and
Stroke_C starting at Offset_3-2, drawn in the user-specific
drawing area having the origin of User_10-3 (0,0), to the
relay server 10-2, to be forwarded onto the transmission
device 10-1.

In these embodiments, since the relay server 10-2 per-
forms coordinate conversion relative to the origin of the
common drawing area, the transmission and reception
devices 10-1 and 10-3 need not perform the conversion
themselves and transmit and receive coordinates data (vector
data) as coordinates data relative to its own origin. That is,
once the transmission and reception devices 10-1 and 10-3
share their origins relative to the origin of the common
drawing area with the relay server 10-2, the coordinates

US 9,448,648 B2

71

conversion processing can be fully transparent to the trans-
mission and reception devices 10-1 and 10-3.

While the defined transmission unit T to send ink data 200
has been described as equal to or smaller than a stroke unit,
it is further possible to transmit ink data 200 in a unit larger
than the stroke unit. That is, it is possible to “aggregate” the
ink data 200 per a unit of semantics, which is larger than the
stroke unit. For example, in the process of defining unit T as
shown in FIG. 33, in step S709, it is determined whether
aggregation is requested. If “YES,” then in step S713, the
unit T is set to a value greater than a stroke unit, which is a
unit of semantics.

FIG. 43 illustrates the concept of a unit of semantics,
while FIG. 44 illustrates a sample flow of transmitting ink
data 200 in a unit of semantics.

FIG. 43 illustrates a word “Network”™ consisting of seven
(7) handwritten letters. 7011 refers to the first stroke, 7012
refers to the second stroke (together forming the first letter
“N”), 7013 refers to the third stroke, and 7014 and 7015
respectively refer to the fourth and fifth strokes that together
form the third letter “t.” Here, the first and second strokes
7011 and 7012 are deemed to form one semantics unit
because they together form one letter, and similarly the
fourth and fifth strokes 7014 and 7015 are deemed to form
one semantics unit because they together form one letter.

FIG. 44 illustrates a sample flow of “aggregating” mul-
tiple strokes that form one semantics unit and transmitting
the stroke data per the unit of semantics. In this example, the
application 300-1 is linked to a character recognition engine.

5

10

15

20

25

72

semantics and together mean “N.” Thereafter, in step S1919,
the reception side renders (draws) the first and second
strokes 7011 and 7012 on its display.

Third Embodiment

A third embodiment is directed to methods for generating
and reproducing ink data configured to represent hand-
drawn data, and to methods of outputting (rendering) draw-
ings using the reproduced ink data. Specifically, processing
of FIG. 92 is described that abstracts (generalizes) pen event
data 9202 dependent on a specific input device sensor to
generate ink data 200. For example, processing is described
that abstracts (generalizes) pen event data having pen pres-
sure data (Type 1) and pen event data not having pen
pressure data (Type 2) so as to generate device-independent
common attributes values.

Background of the Third Embodiment

Document (D5) above describes an ink data standard, and
states the purpose of the standard as follows: “Jot [standard]
enables ink to be used across a very broad range of appli-
cations and devices. With a standard interchange format, a
number of scenarios are possible. Here are a few examples
of'ink sharing. Of course, many more applications will arise
as Jot is implemented on diverse platforms.”

The standard utilizes a flag called “inkForceDataPresent”
that indicates that pen pressure data, which is one attribute
of ink data, is present.

Each of the points (dots) that form a stroke is defined in
the data structure of Table 1 below:

TABLE 1

Data structure of Document (D5)

typedef struct tag_ INK_ POINT {

XY32 position; // required ®/y point data

S16 force; // optional force data

S16 height; // optional z height data

S16 rho; // optional rotational data

ANGLE16 angle; // optional theta and phi data
INK__BUTTONS buttons; // optional proximity, contact, button data

} INK_POINT, FAR *P_INK_ POINT;

In FIG. 44, the hatched duration “d_for_7011” is a period
during which the first stroke 7011 is detected. The ink data
generation section 1207 detects, based on the analysis result
of the character recognition engine used by the application
300-1, that the first stroke 7011 does not form a complete
unit of semantics. Since the unit of semantics is not yet
completed, in step S1911, the process skips an ink data
transmission step. Then, during the hatched duration
“d_for_7012” the second stroke 7012 is detected. In step
S1913, the ink data generation section 1207 detects that the
first and second strokes 7011 and 7012 form one unit of
semantics. In step S1915, the ink data generation section
120T aggregates the first and second strokes 7011 and 7012,
and also generates metadata information indicating that the
first and second strokes 7011 and 7012 together form one
unit of semantics and together mean “N.” The transmission
device 10-1 transmits the stroke (ink) data (1501
DATA_INK_ALLOS) together with the metadata informa-
tion to the reception side (the relay server 10-2 or the
reception device 10-3). In step S1917, the reception side
extracts the metadata information to determine that the first
and second strokes 7011 and 7012 together form one unit of

45

50

In the above, “force” is a value that corresponds to pen
pressure. Therefore, to an electronic device capable of
obtaining “pen pressure” information (e.g., most EMR-type
tablets), the inkForceDataPresent flag value is set to a
Boolean value indicative of the presence of pen pressure
data, and the value of pen pressure (“force”) is entered as
input information.

Document (D1) describes another ink data standard, and
states the purpose of the standard as follows: “Hardware and
software vendors have typically stored and represented
digital ink using proprietary or restrictive formats. The lack
of a public and comprehensive digital ink format has
severely limited the capture, transmission, processing, and
presentation of digital ink across heterogeneous devices
developed by multiple vendors. In response to this need, the
Ink Markup Language (InkML) provides a simple and
platform-neutral data format to promote the interchange of
digital ink between software applications.”

In this standard, a stroke is called a “trace,” and its data
structure can be defined by attributes that are freely selected
from among a predefined set of attributes.

In a default setting, a trace is represented as a list of
decimal number combinations (X, Y), according to the data
structure of Table 2-1 below:

US 9,448,648 B2

73
TABLE 2-1

Data structure (Default) of Document (D1)

<traceFormat xml:id=“DefaultTraceFormat>
<channel name=“X" type="decimal”/>
<channel name="Y" type="decimal”/>
</traceFormat>

To the default data structure, further attributes may be
added by defining additional channel names, such as F
(force). For example, an attribute (channel name) indicative
of pen pressure is defined as follows:

channel name Dimension default unit interpretation

F Force % pen tip force

By setting the name of a <channel name> tag of <trace-
Format> as “F (Force),” for example, one can custom-define
a “traceFormat” including a force attribute.

A trace is then represented as a list of decimal number
combinations (X, Y) and according to any custom-defined
“traceFormat.” Thus, ink data (e.g., coordinates, pen pres-
sure, etc.) represented in a custom-defined traceFormat is
provided as a list of continuous values.

Document (D2) describes yet another attempt to standard-
ize ink data in the industry, and describes its purpose as
follows: “Ink Serialized Format or ISF is a Microsoft format
to store written ink data. The format is mainly used for
mobile devices like Personal digital assistants, tablet PCs
and Ultra-Mobile PCs to store data entered with a stylus.”
D3 further describes that “[a]n ink object is simply a
sequence of strokes, where each stroke is a sequence of
points, and the points are X, and Y coordinates. Many of the
new mobile devices can also provide information such as
pressure, and angle. In addition [they] can be used to store
custom information along with the ink data.”

When pen pressure information is to be included, the
following attribute can be included in the data format:

TAG_NORMAIL_PRESSURE Indicates pressure is the
first thing after x, y

Information including the TAG_NORMAIL_PRESSURE
information can then be serialized and outputted.

Summary of the Third Embodiment

The ink data structures proposed in Documents (D1),
(D2) and (DS5) above are intended to output device-specific
information obtained by a pen-type input device without
abstracting or generalizing the information. For example,
when pen pressure data is obtained as an attribute by a
pen-type input device, the pen pressure data can be outputted
to an electronic device having capability to receive and
process pressure data but cannot be outputted to an elec-
tronic device which is not expected to have such capability,
such as most electrostatic capacitive type tablets. Similarly,
when a pen-type input device is incapable of obtaining pen
pressure data, no pen pressure data can be outputted to an
electronic device even when the electronic device does have
capability to receive and process pen pressure data. Still
further, some “finger” type input devices capable of receiv-
ing hand-drawn input by a finger, such as electrostatic
capacitive type sensors, are incapable of generating finger
pressure data when a finger is pressed against the sensor
surfaces. Thus, since not all pen-type input devices or finger
type input devices are capable of obtaining pen pressure data
and since not all electronic devices (e.g., tablets and PCs) are
capable of obtaining, receiving and processing pen pressure

10

15

20

25

30

35

40

45

50

55

60

65

74

data, utilization of pen pressure data in the currently avail-
able ink data is rather limited. This renders the currently
available ink data unsuited for the purpose of more realis-
tically simulating or representing hand-drawn data, because
in reality pen pressure applied by a user significantly
impacts how a pen stroke (or pen trace) appears on paper by
affecting the width or darkness of a pen stroke or creating a
blotch or smudge of varying size.

Techniques proposed in Documents (D1), (D2) and (DS5)
are aimed at recording and reproducing movement of a pen
(i.e., “pen event”) including information such as how much
pen pressure is applied or how much the pen is tilted during
the pen event. However, information that ultimately needs to
be recorded and reproduced is the resulting “appearance” of
a series of pen events, such as how multiple strokes or traces
appear on a screen. The resulting appearance of a series of
pen events is typically used as graphics data. Document (D3)
proposes a vector data standard, but Document (D3) is
indifferent to the use of a pen as an input device and, as a
result, its data are not suited for representing or expressing
strokes resulting from use of a pen. For example, the
technique of Document (D3) does not permit variable stroke
width or variable opacity of a stroke in version 1.1.

A need exists for methods of generating and reproducing
ink data based on an ink data model (semantics or language)
and an ink data format based on the ink data model, which
do not require pen pressure data so as to be usable by devices
that do not support pen pressure data. In some embodiments,
the method of generating ink data is capable of generating
substitute parameter(s) for the pressure data based on infor-
mation readily available in most, if not all, of a variety of
devices. Use of the substitute parameters in the ink data
model of the present invention to represent pressure infor-
mation achieves providing rendered (drawn) pen strokes
with various nuanced expressions and realistic appearances
that simulate actual pen strokes.

Description of the Third Embodiment

The description of various exemplary embodiments of the
present invention below is generally organized in the fol-
lowing six sections:

[1] Overall System Architecture, in reference to FIGS. 1
and 45-47B

[2] Stroke Language (SL) and Stroke File Format (SFF)

[2-1] Ink data Model (“Stroke Language™), in reference to

FIGS. 48A-481

[2-2] Stroke File Format (SFF), in reference to FIGS.

487-48L

[3] Ink data processing section 100 (Generator 1007T), in
reference to FIGS. 49-63

[4] Ink data processing section 100R (Reproducer 100R),
in reference to FIGS. 64-66

[5] Ink data rendering process, in reference to FIG. 67

[6] Effects: Ink Data Drawing Examples, in reference to
FIGS. 68-72

[1] Overall System Architecture (FIGS. 1 and 45-47B)

FIG. 1 described above in reference to the first embodi-
ment illustrates an overall system in which the ink data 200
of the present invention may be generated, reproduced, and
rendered (drawn) on a screen according to the third embodi-
ment of the present invention. In particular, the Ink Data
exchange infrastructure 10 outlined in solid lines in FIG. 1
represents an infrastructure, realized by libraries that use ink
data 200 based on the common language model, for
exchanging the ink data 200, wherein the ink data 200 are
generalized so as to be commonly usable by a variety of
application services and devices, some supporting pressure
data and others not supporting pressure data.

US 9,448,648 B2

75

In FIG. 1, Device 10-1-1 includes, as an input sensor, a
pen-type input device capable of sensing pen pressure dat.
Device 10-1 generates the ink data 200 using an application
provided by Application Service #1. The generated ink data
200 may then be output in a suitable output form (e.g., in
packets) corresponding to the destination media (e.g., a
network).

Device 10-1-2 is a tablet-type input device capable of
receiving hand-drawn input made by a user’s finger. The
sensor of Device 10-1-2 is not capable of outputting pen
pressure data, but may still generate the ink data 200 using
an application provided for Application Service #2 which
does not require pressure data. The ink data 200 may then be
outputted in a suitable form corresponding to the destination
media.

Device 10-3 is a desktop-type PC that subscribes to
Application Service #2. Device 3 may process (e.g., render
on its display screen or redistribute) the ink data 200
outputted from Device 10-1-1 or Device 10-1-2, using an
application provided by Application Service #2.

Application Service #1 and Application Service #2 run-
ning on Devices 10-1-1, 10-1-2 and 10-3 all utilize the
common information model (“Stroke Language”) represen-
tative of the ink data 200.

The ink data 200 according to embodiments of the present
invention are usable by various types of devices on a variety
of service applications, not limited to those devices and
service applications capable of obtaining or processing pen
pressure data per se.

FIG. 45 illustrates data input/output at an ink data 200
processing section 100 (generator 100T) and an ink data
generating method on the left hand side, and at an ink data
processing section (reproducer 100R) and an ink data repro-
ducing method on the right hand side, according to embodi-
ments of the present invention. Ink data processing section
100T corresponds to 100T in FIG. 5 of the first embodiment.

The ink data processing section 100T according to
embodiments of the present invention receives pen event
data from a sensor of Device 10-1-1 and a sensor of Device
10-1-2, wherein the pen event data represents a pen (or
finger) movement that created a pen (or finger) stroke and
includes coordinates data (e.g., (X, Y) positions) of the
stroke. The pen event data may also include device-depen-
dent data such as pen pressure data and pen tilt data. In FIG.
45, pen event Type 1 data from the sensor of Device 10-1-1
includes pen pressure data, wherein the sensor of Device
10-1-1 is a device capable of outputting pressure data such
as a pen-tablet device driver or APIs for an EMR type pen
tablet used with a pressure sensitive stylus. On the other
hand, pen event Type 2 data from Device 2 does not include
any pressure data, wherein Device 10-1-2 is a device inca-
pable of outputting pressure data such as an iPad™ tablet or
other capacitive-type touch sensor tablets. The ink data
processing section 100 receives device-dependent pen event
data (Type 1 and Type 2) and generates and outputs device-
independent ink data 200 according to embodiments of the
present invention, which can be shared by various devices
regardless of their capability to process pressure data.

To generate the ink data 200 based on the pen event data,
the ink data processing section 100 also receives context
information (INPUT 2) about the pen event data from the
application or operating system used to input the pen event
data, as shown in FIG. 45. The generated ink data 200 is a
collection of various objects (stroke objects 210, metadata
objects 250, drawing style objects 230, manipulation objects
270, etc., see FIG. 48B), which are arranged in a tree
structure in FIG. 45. The context information (INPUT 2)

10

15

20

25

30

35

40

45

50

55

60

65

76
includes, for example, pen (tip) type (e.g., pencil, crayon,
brush, etc.) and/or pen color information received from a
drawing application, pen tablet resolution information and
sampling rate, pen event entry time and location informa-
tion, a pen ID, a user ID provided by an OS, and any other
information regarding a stroke provided by the (software)
application used to generate (draw) the stroke.
The ink data model defines semantics of data used in the
application area (domain) that processes the ink data 200.
When the common ink data model is shared amongst various
applications and services, information can be freely shared,
reliably, in a system structure in the domain that processes
the ink data 200.
In FIG. 45, broken arrows indicate that the ink informa-
tion model defines each class object of the ink data 200, and
a collection of ink data objects forms the ink data 200.
The ink data processing section 100 outputs the generated
ink data 200 as a collection of data objects in a media format
(e.g., in a file, packets, etc.) requested by the application that
needs the ink data 200. There are generally two types of
media formats:
(1) Stroke file format (SFF) that stores the ink data 200 in
a persistent (semi-permanent) form; and

(2) Stroke messaging format (SMF) that is suited for
transmitting the ink data 200 in a message or in
real-time communication.

The ink data processing section 100R receives the ink
data 200 in SFF or SMF files, interprets and extracts the ink
data 200 recorded in a specific media as a byte or a binary
sequence, and provides the extracted ink data 200 to various
types of applications 300 that utilize the ink data 200. In
response to a request from one of the applications
300-1 . . . 301-», the ink data processing section 100R
extracts ink data objects and reproduces information defined
by the ink data model, and provides the extracted (repro-
duced) ink data 200 to the requesting application 300-1,
300-2. The ink data processing section 100R is typically
embodied as a library dynamically or statically linked to the
requesting application 300 and executed on a processor in a
personal computer. In another embodiment the ink data
processing section 100R may be a cloud server configured to
reproduce the ink data 200 by interpreting the ink data
model.

Each of the applications 300-1 . . . 300-» retrieves a
necessary amount/portion of the ink data 200 extracted and
reproduced by the ink data processing section 100R and
utilizes the retrieved ink data 200 in executing various
operations. For example, the application 300-1 is a drawing
application in the illustrated embodiment. A drawing appli-
cation retrieves a full set of the reproduced ink data 200 and
applies, for example, scaling, rasterizing, and rendering
operation on the retrieved ink data 200 and may also output
an image file.

In various embodiments, the ink data processing section
100 and the ink data processing section 100R, as well as the
applications 300 that utilize the libraries realizing the gen-
erator/reproducer functions, may be embodied in one or
more computing devices each including memory and a CPU
(central processing unit) or a GPU (graphics processing
unit). For example, the ink data processing section 100, the
ink data processing section 100R and the drawing applica-
tion 300-1 may be embodied in one computing device. In
this case the ink data processing section 100 and the ink data
processing section 100R can use the device memory to share
common ink data objects. FIGS. 46A-46C respectively
illustrate three configuration examples of an ink data gen-
erating apparatus or method according to embodiments of
the present invention.

US 9,448,648 B2

77

FIG. 46A illustrates an apparatus or method, in which the
ink data processing section 100T resides in a server that is
different from a stroke-inputting terminal that may be
coupled to Device 10-1-2. Device 10-1-2 obtains device-
dependent pen event data that may or may not include pen
pressure data. In the illustrated embodiment, Sensor of
Device 10-1-2 obtains device-dependent pen event data of
Type 2 that does not include pen pressure data. Device
10-1-2 then transmits the obtained device-dependent pen
event data via a network, such as the Internet, to the server
that embodies the ink data processing section 1007T. The ink
data processing section 100T implemented in the server
receives the device-dependent pen event data from Device
10-1-2 and generates the ink data 200 as defined by the ink
data model. Context information (INPUT 2) regarding the
pen event may also be provided by Device 10-1-2 to the ink
data processing section 10071, or may be omitted in case
context information (INPUT 2) is not necessary when, for
example, the application provided by the server utilizes a
common pen type.

FIG. 46B illustrates another apparatus or method, in
which the ink data processing section 1007 resides in a
Device 10-1, wherein the Device 10-1-1 also includes a
device driver to control Device 10-1-1. Device 10-1-1
obtains device-dependent raw data that may or may not
include pen pressure data. In the illustrated embodiment, the
sensor of Device 10-1-1 obtains raw data that includes pen
pressure data. The sensor of Device 10-1 sends the raw data
including pen pressure data to an I/O of the terminal via a
suitable interface protocol such as the USB. The device
driver in the terminal processes the received raw data to
produce device-dependent pen event data of Type 1 that
includes pen pressure data. The ink data processing section
100 of the device 10-1-1 receives the device-dependent pen
event data of Type 1 from the device driver and generates the
device-independent ink data 200 defined by the ink data
model. At this time, as illustrated, the ink data processing
section 100 may also receive context information (INPUT 2)
regarding the pen event data from the application and/or OS
operating on the terminal. The generated ink data 200 may
be serialized in the form of a byte sequence or a bit or byte
sequence and recorded onto suitable media (network, stor-
age device, etc.).

FIG. 46C illustrates yet another apparatus or method, in
which the ink data processing section 1007 resides in a
terminal that also includes an input sensor (e.g., touch
sensor). For example, Device 10-1-2 of FIG. 46C is an
electrostatic capacitive-type touch sensor that may function
as a terminal, and Device 10-1-2 includes the ink data
processing section 100 in addition to the touch sensor. The
touch sensor includes a control IC capable of obtaining
device-dependent positional data (e.g., positions touched by
fingers) but may or may not be able to obtain pen (or finger)
pressure data or other pen-specific data (angle, tilt, etc.). In
the illustrated embodiment, the touch sensor obtains and
sends pen event data of Type 2 that does not include pen
pressure data. The ink data processing section 100T receives
the device-dependent pen event data of Type 2 from the
sensor’s control IC and generates the device-independent
ink data 200 defined by the ink data model. At this time the
ink data processing section 100 may also receive context
information (INPUT 2) regarding the pen event data (IN-
PUT 1), if any, from the application and/or OS operating on
Device 10-1-2. The ink data 200 may then be outputted in
the form of a byte sequence or a bit sequence recorded onto
suitable media (network, storage device, etc.) in a persistent
form (SFF) or in a messaging packet form (SMF), etc.

20

25

30

40

45

78

FIGS. 47A and 47B illustrate operation of an ink data
reproducing method, according to embodiments of the pres-
ent invention.

FIG. 47A illustrates a reproducing method, in which a
server includes the ink data processing section 100R (receiv-
ing and reproducing side), an application 300-1, the ink data
processing section 100R, and memory (RAM) in which the
ink data 200 in a certain format (e.g., SFF) generated by the
ink data processing section 100T running with the server,
may be stored. The Ink data processing section 100R cor-
responds to 100R in FIG. 22 of the first embodiment. The
application 300-1 invokes static/dynamic libraries of the ink
data processing section 100R to get data necessary for the
application 300-1. In the illustrated embodiment, the appli-
cation 300-1 is a drawing display program. The ink data
processing section 100R may selectively extract and repro-
duce the necessary data from among the ink data stored in
the RAM and provide the reproduced necessary data to the
application 300-1. For example, the reproduced necessary
data may include position data and RGB color data, but may
or may not include variable stroke width data. The applica-
tion 300-1 receives the reproduced necessary data from the
ink data processing section 100R and performs necessary
drawing operations, such as interpolation, geometry genera-
tion and rasterization, to thereby output (render) image data
on a display screen.

FIG. 47B illustrates another reproducing method, in
which a device 10-3 includes the ink data processing section
100R and an application 300-2. In this case, the ink data 200
generated by the ink data processing section 100 (not
shown) are prepared into messages or packetized pursuant to
a streaming protocol (e.g., in SMF), and outputted to a
network, for example. The application 300-2 requests the
ink data processing section 100R to obtain data necessary
for the application 300-2. In the illustrated embodiment, the
application 300-2 is a character image textization applica-
tion that converts hand-drawn text into machine-readable
text pursuant to any text encoding scheme. As such, the
application 300-2 requires position data (X-Y data), but does
not necessarily require RGB color data. Also, the application
300-2 may require information about an author of the ink
data 200 (so as to distinguish a particular author’s distinctive
handwriting, for example).

The ink data processing section 100R may selectively
extract and reproduce the data necessary for the application
300-2 from among the ink data 200 in the messages or
packets (in SMF) received from the network, and provide
the reproduced necessary data to the application 300-2. The
application 300-2 receives the reproduced necessary data
from the ink data processing section 100R and performs
necessary textization operations to output the textization
result, perhaps together with an author ID.

As described above, functions and operations of the ink
data processing section 100 and the ink data processing
section 100R may be distributed or consolidated amongst
various devices (input devices, terminals, servers, etc.) on
the Internet infrastructure depending on each application and
the type of media used in each embodiment.

[2] Stroke Language (SL) and Stroke File Format (SFF)

[2-1] Ink Data Model (“Stroke Language”) (FIGS. 48A-
481)

FIGS. 48A and 48B are Entity-Relationship diagrams
illustrating an information model for ink data 200 (Stroke
Language) according to embodiments of the present inven-
tion.

In the figures, a box indicates an object or class used in the
information model. For example, objects “stroke,” “point,”

US 9,448,648 B2

79

and “metadata” are used. The objects include class objects
defined by object-oriented language as well as data struc-
tures such as a structure expressed as a collection of attribute
data.

An oval in FIG. 48B indicates an attribute of an object
included in a box. For example, attributes “position,”
“color” and “radius” are used for the data object “Point.” Of
attributes, those shown in solid ovals are necessary attributes
for the corresponding data object. For example, attribute
“position” is a necessary attribute for the data object “point.”
Those ovals shown in broken lines are extendable attributes
which can be added. For example, attribute “color” is merely
addable and not necessary for the data object “point.” A
diamond in the figures indicates a relationship between the
data objects connected by the diamond. For example, a
diamond labeled “contained” means that one of the data
objects connected by the diamond is contained in the other
data object.

In general, an “information model” describes and defines
data semantics in an object area (domain), and represents
concepts, relationships, constraints, rules and processing
used in the domain. An information model provides a
systematic structure that allows information requests in the
context within the domain to be shared, reliably, amongst
various applications and services. The ink data model out-
putted by the ink data processing section 100T and/or
reproduced by the ink data processing section 100R is
configured to be able to express a trace of a stroke inputted
by a pen moved by a user, and attributes of the pen used to
input a trace such as a pen type (pencil, brush, etc.) and a pen
color.

FIG. 48A illustrates four sub-domains in the information
model for the ink data 200. The information model for ink
data 200 can be conceptually categorized into the following
four sub-domains based on the functions and purposes of
various data objects:

(SM) Stroke Model sub-domain, which includes a stroke
object 210 and a point object, both defining the position
(geometry) and the layout of the ink data 200.

(MD) Metadata sub-domain, which mainly defines meta-
data for the stroke object 210;

(R) drawing style object 230 (Rasterization sub-domain,
which mainly defines information necessary to convert the
stroke data (stroke objects) to image data; and

(M) Manipulation sub-domain, which includes a group of
data objects for dynamically manipulating the stroke objects
or the instances of the stroke objects, such as deleting,
dividing, moving and copying the stroke objects.

Each of the sub-domains will be described below in
additional reference to FIG. 48B.

<(SM) Stroke Model Sub-Domain>

The Stroke Model sub-domain includes stroke object 210,
point objects, and canvas objects.

(SM1) A stroke object 210 is an essential component of
the ink data model and forms the core of the ink data 200.

FIG. 48C illustrates the structure of a stroke object 210.
A stroke object 210 includes point objects of the “1st point”
through the “n-th point” which collectively define the geom-
etry of a stroke. The stroke object 210 corresponds to data
tagged with “trace” in InkML (D1), “Path” in SVG 1.1 (D3),
and “Canvas Path” in HTML 5 (D4) specifications.

A stroke object 210 may include startParameter 301 and
endParameter 303 values as object attributes, as described
above in reference to the first embodiment. In a stroke object
210 including the startParameter 301 and endParameter 303
as attributes, the startParameter 301 and endParameter 303
are defined separately from the point objects. The stroke

25

30

40

45

50

65

80

object 210 may include, as extendable attributes per stroke,
“color” and “radius” (may be substituted with “width” for
convenience) attributes. These attributes will be described in
detail below.

(SM2) A point object is an object such that N number of
point objects are contained in one stroke object 210. A point
object includes as a necessary attribute a “position,” which
indicates a position in a given (e.g., 2D) coordinate system.
The point object may include, as extendable attributes,
“color,” “radius,” etc. The “color” may be set per point, or
may be set per stroke.

When the same attribute (e.g., color) is defined for mul-
tiple data objects in a conceptual tree structure, the attribute
given to a lower-level object (e.g., objects closer to the point
objects) is given priority. For example, if the color of a
stroke (R, G, B and transparency alpha (o)) is expressed in
a 4D vector (R1, G1, B1, al), and if the color of the 3rd
point in the stroke is defined as (R2, G2, B2, a2), the color
of the 3rd point is determined to be (R2, G2, B2, a2). As
another example, if the color attributes vary between a
shape-filling rasterization (drawing style) object to be
applied to a stroke object 210 and the stroke object 210
itself, the color attribute of the stroke object 210 itself takes
priority.

The stroke object 210 or the point object may be consid-
ered as possessing the “addition” command itself. Each time
a new stroke object 210 or a new point object is generated,
it commands that the new stroke object 210 or the new point
object be added to the data structure.

(SM3) A canvas object indicates the size of a drawing area
(“canvas”) used when one or more strokes are inputted, and
includes as attributes width “W” and height “H,” for
example. It may also indicate the amount of ink absorption
per type of paper, such as Japanese paper, carbon paper,
regular paper, copy paper, photographic paper, etc. Paper
type information can be combined with rasterization (draw-
ing style) objects to determine the actual image representa-
tion of the ink data 200.

FIG. 48D illustrates a canvas object. The drawing on the
left indicates the size of a drawing area when a stroke is
inputted. It illustrates that the stroke is inputted to the
drawing area defined by width “W1” and height “H1.” The
drawing on the right illustrates how the canvas size (W1,
H1) obtained from the ink data 200 may be used to repro-
duce the stroke. In the illustrated example, it is assumed that
the stroke is reproduced on a device, such as a mobile
terminal, including a smaller drawing area having width
“W2” and height “H2” than the area (W1, H1) used when the
stroke is originally drawn. In such a case, the original
drawing area (W1, H1) and the relative size/position of the
stroke to the original drawing area may be used in enlarging,
reducing (shrinking), cropping or offsetting the stroke to fit
the given canvas area of the rendering device (W2, H2).

<(MD) Metadata Sub-Domain>

The Metadata sub-domain includes metadata objects 250
that each defines metadata for a stroke object 210, wherein
the metadata includes context information (INPUT 2)
regarding the pen event data used to generate the stroke
object 210.

(MD1) A metadata object 250 has a one-to-one relation-
ship to a stroke object 210 to “describe” the stroke object
210.

1) A timestamp attribute contains time information at
which the stroke was recorded and represents, for
example, a value of UNIX time in a defined format
(32-bit unsigned integer). FIG. 48F illustrates the effect
of using a timestamp attribute per stroke. Assume that

US 9,448,648 B2

81

two strokes a and b were recorded by two separated
users substantially simultaneously. The drawing on the
left shows that stroke a was drawn after stroke b, i.e.,
the timestamp value for stroke a is greater than the
timestamp value for stroke b. The drawing on the right
shows that stroke a was drawn before stroke b, i.e., the
timestamp value for stroke a is less than the timestamp
value for stroke b. Based on different timestamp values
respectively associated with different strokes, it is pos-
sible to accurately render strokes entered by multiple
users by determining which stroke should be placed
above other stroke(s) at each cross-section, for
example.

2) An author attribute contains information specifying the
author who has recorded a stroke.

3) A pen ID attribute is information that specifies a pen
used to record a stroke. Ideally, an ID is globally unique
to each pen. When ID information is not available or
when pen ID needs to be robustly established, pen 1D
may be used in connection with a sensor-side ID of a
sensor used to detect input made by the pen.

Using the attributes described above, stroke metadata may
describe, as non-limiting examples, when and by whom a
stroke was drawn using which particular pen.

<(R) Drawing Style Object (Rasterization) Sub-Domain>

The Drawing style object (Rasterization) sub-domain
includes a group of drawing style objects 230 that each
retains what qualifying or modifying process(es) were asso-
ciated with a stroke object 210 when the stroke was inputted.
A drawing style object 230 is built from context information
(INPUT 2) regarding the pen even data based on which the
stroke object 210 is generated. For example, drawing style
objects record various qualifying or modifying processes
associated with (applied to) strokes such as different draw-
ing tool attributes (brush, pencil, crayon, etc.) and different
pen tip width. The following objects (collectively called
“drawing style objects”) may be part of the Rasterization
sub-domain.

(R1) A rasterization style object is a “rendering” object
that has an M:N ratio relationship to a stroke object 210. For
example, M (e.g., 5) number of style objects (including their
extendable objects) may be applied to render N (e.g., 20)
number of stroke objects. The style object is a so-called
super-class object, whose attributes may be inherited by
other object classes such as a shape filling style object in an
extended relationship. The style object includes “composi-
tion” as an attribute. “Composition” indicates what type of
function (e.g., normal, multiply, min, max of the current and
previous strokes, erase, etc.) is to be used when blending a
stroke with previously-created strokes or with background.
FIG. 48F includes conceptual illustration of three represen-
tative objects that extend the style object to qualify or
modify a stroke object 210: a shape filling style object, a
particles scattering style object, and an area replication style
object.

(R2) A shape filling style object, as illustrated at the top
in FIG. 48F, is applied to a stroke object 210 to define the
stroke outline and color when the stroke object 210 is
rendered (drawn) on a screen. The shape filling style object
defines multiple circles to be respectively positioned relative
to multiple point objects that form the stroke object 210,
wherein each circle may be associated with radius and color
attributes when each point object is not associated with
radius and color attributes. Use of the radius and color
attributes to define a point object or a stroke object 210,
which consists of multiple point objects, is one of the
characteristics of the present invention and will be described

10

15

20

25

30

35

40

45

50

55

60

65

82

in detail below. A shape filling style object may also include
an anti-aliasing attribute that defines what algorithm should
be used to visually eliminate edges of the stroke outline
which is defined by an envelope of a series of overlapping
circles.

(R3) A particles scattering style object, as illustrated in the
middle of FIG. 48F, uses a “particle” instead of a circle used
in the shape filling style object described above. A particles
scattering style object includes “radius” and “color” attri-
butes, similarly to the shape filling style object described
above.

The particles scattering style object also includes an
attribute “Random Seed” (see FIG. 48B), which is an integer
value and used to generate pseudo-random numbers in order
to simulate “roughness” or “splashes” for tools like a pencil
or a watercolor brush. The “random seed” attribute is stored
in a file format in order to be able to exactly render the same
drawing every time when the user opens the file or remote
user receives the ink data.

Attribute “Shape Rotation” indicates whether each par-
ticle is to be rotated at a random rotation angle or to be
rotated along a certain trajectory.

Attribute “Spacing” indicates the distance between two
consecutive particles.

Attribute “Range” indicates each particle’s offset value in
a direction perpendicular to the trajectory direction, as
indicate by an arrow in FIG. 48F. Within the width defined
by the arrow, the location of a particle may be randomly
offset (changed) based on a random number generated based
on the random seed.

Attribute “Fill” defines texture to be applied to the shape,
such as hatching.

Attribute “Fill Offset” indicates a cut-out position of
texture applied to the shape such as hatching, and is used to
define and change the cut-out position to avoid the same
texture being consecutively applied.

Attribute “Build up” indicates whether the number of
generated particles is to increase according to passage of
time when a pen is situated at a fixed point for a continuous
period of time.

Attribute “Mixing” defines what type of function (e.g.,
normal, multiply, none, etc.) is to be used to calculate the
color of a position where two consecutive particles overlap
with each other. For example it may define that the color
should be the same as one of the particles’ color or a darker
color (e.g., mixture of the two colors).

(R4) An area replication style object, as illustrated at the
bottom of FIG. 48F, is used to extend a style object. An area
replication style object sets an area defined by closed curves
interpolated between points. Aftribute “transformation
matrix” retains an affine transformation matrix to be applied
to the content within the area enclosed by the closed curves.
Based on the transformation matrix, the area content may be
rendered to a different coordinate. Transformation based on
the matrix only impacts the rendering style of a stroke object
210, and does not manipulate or modify the stroke object
210 itself.

<(M) Manipulation Sub-Domain>

The Manipulation sub-domain defines a transform (or a
manipulation object) to manipulate (divide, delete, copy and
paste, modity, etc.) a whole or a part of a pre-existing stroke
object 210 generated according to the ink data model.

(M1) Aslice object 274 is a manipulation object 270 to be
applied to extract one or two portions of a stroke object 210.
FIG. 48G illustrates the operation of a slice object 274. The
drawing at the top in FIG. 48G illustrates a stroke object 210
before the slice object 274 is applied. The slice object 274

US 9,448,648 B2

83

is represented by another stroke having “WIDTH” which
crosses (intersects) the stroke object 210. The slice object
274 having “WIDTH” is typically associated with a “delete”
function. The positions on the stroke object 210 at which the
slice object 274 having “WIDTH” intersects are located,
respectively, between the k-th point and the (k+1)-th point,
and between the (k+2)-th point and the (k+3)-th point. The
original stroke curve is generated by interpolating each point
with a Catmull-Rom curve, and in order to cut the stroke into
two strokes without modifying the shape of the original
stroke, when the stroke is sliced, no new end point objects
are generated for the newly created end points. Instead, a
value for the new endParameter 303 is set as an attribute for
the first stroke, and a value of the new startParameter 301z
is set as an attribute for the second stroke object 210, as
shown in the bottom drawing of FIG. 48G. The new end-
Parameter 303% and startParameter 301% are expressed as
one or several “float” point numbers indicative of an internal
division point between two points defining the first dis-
played segment or the last displayed segment. For example,
the new endParameter 303z for the first stroke may be
defined as an internal division point between the original
k-th point and the original (k+1)-th point. Thus, the shape of
the original stroke can be used to represent the shapes of two
newly created stokes. In some embodiments, a sliced (re-
moved) stroke portion extending along “WIDTH” in FIG.
48G may be represented as the “third” stroke divided from
the original stroke.

According to the method described above, an internal
division point between two points in the original stroke is
retained as an attribute (new endParameter 3037 and new
startParameter 301#) for the newly created (sliced) stroke.
As such, no new point objects are created as a result of the
slice operation and the original collection of “input points”
is not modified. Accordingly, when a curve is to be derived
from a collection of interpolated Catmull-Rom curves, the
curve outline does not change between before and after the
slicing operation.

Attributes “Alter Style” and “Alter metadata™ indicate
whether the attributes of plural strokes divided from the
original stroke by the slice operation are altered (newly-
defined) for the divided strokes (e.g., “Author” attribute), or
unaltered and the same as the attributes associated with the
original stroke (e.g., pen color attribute).

The start and end parameters 301 and 303 are attributes
indicative of the start and end positions of two strokes,
respectively, which are divided from the original stroke.

Attribute “Point Range” defines the range of points over
which the crossing stroke (the slicing manipulation object)
defined by “WIDTH” in FIG. 48G intersects the stroke
object 210 to be manipulated. In FIG. 48G, the point range
includes the (k+1)-th point and the (k+2)-th point.

FIG. 48H illustrates the “erase” function realized by
applying the slicing manipulation object When such “eras-
ing” manipulation object is applied to a pre-existing stroke
object 210, the stroke object 210 is divided into two
strokes—the first stroke (stroke 1) having a new endParam-
eter 303z and the second stroke (stroke 2) having a new
endParameter 301z point, with an exact portion (e.g.,
between P_intersect_L. and P_intersect_R in Hole_segment
1801 in FIG. 18) in the middle being “erased.” In this case
two new strokes (stroke 1 and stroke 2) are to be generated
and middle part are to be erased when this manipulation is
finalized (committed) to modify the original single stroke
object 210.

(M2) A selection object, as illustrated in FIG. 481, is a
manipulation object that “contains” a plural (N) number of

20

40

45

84

slice objects 274 (or slicing manipulation objects). The
selection object “selects” an area (slice_2) enclosed by the
plural (N) number of slice objects 274 (slice_1, slice3, and
slice_3), such that any portion of pre-existing stroke object
210 inside the selected area can then be manipulated
(moved, copied, enlarged, shrunk, etc.) by applying a trans-
formation matrix for the portion In FIG. 48I, the selected
area shown in a lasso shaped dotted closed curveincludes a
partially slicedstroke object 210, which can then be manipu-
lated, for example, moved (translated) as illustrated in FIG.
481.

Attribute “transformation matrix” is an affine transforma-
tion matrix. The illustrated example shows the values within
the area being translated by tx and ty. When a matrix object
is used to define certain manipulation, it is possible to
express points within an area (slice_2) as if they have
virtually moved to different locations. In this case three new
strokes (strokel, stroke2, and stroke3) are to be generated
when this manipulation object is finalized (committed) to
modify the original single stroke object 210.

Attribute “Duplicate” indicates whether to retain an object
at the original position (before transformation) even after
application of an affine transformation matrix to virtually
move the object to a different position. For example, by
retaining the original position/area in addition to the virtu-
ally-moved new position/area, it is possible achieve copying
wherein the original position/area is copied onto the new
position/area.

[2-2] Sample Stroke File Format (FIGS. 487-481)

FIG. 48] illustrates the ink data structure (object tree)
generated or handled by the ink data processing section 100
(100T or 100R), according to the definition of the ink data
model as shown in FIG. 48B, as well as a stroke file format
(SFF) file in which the ink data structure is serialized and
persisted, according to embodiments of the present inven-
tion.

The upper portion of FIG. 48] illustrates an ink data
structure generated by the ink data processing section 100 in
its internal processing resource, such as in memory space.
For example, the stroke object 210 is instanced in #1 through
instances. In each of i number of stroke objects, one or
more point objects are instanced (point #1 through #j), and
one metadata object 250 and one drawing style object 230
are defined in association with each other (in the form of an
instance tree). The data structure is according to the defini-
tion of the ink data model as shown in the entity-relationship
(ER) diagram of FIG. 48B. In FIG. 481, stroke #1 and stroke
#2 include differently-named style objects (style #1 and style
#2), though the substantive data in each of the style objects
is the same. This occurs, for example, when stroke #1 and
stroke #2 are drawn using the same drawing tool (having the
same pen tip type and pen color) in the same drawing
application.

The bottom portion of FIG. 4817 illustrates an example of
a Stroke File Format (SFF) file in which the data structure
shown in the upper portion of FIG. 48] is arranged. That is,
for each stroke object #1 through #i, point objects #1
through #j that form the stroke object 210, the metadata
object 250 that describes the stroke object 210, and the
drawing style object 230 that defines how the stroke object
210 is rendered (drawn) on a screen are defined in the SFF
file. As shown, one file named “InkDataFile” contains
information about a plurality of strokes #1 through #i.

<Information about Stroke #1>

(1) First, information regarding stroke #1 itself is

described. The information may include byte
sequence(s) (or binary sequence(s), herein interchange-

US 9,448,648 B2

85

ably used) in which attributes of stroke #1 such as a
startParameter 301 and an end Parameter 303 of stroke
#1 are encoded. The information also includes byte
sequence(s) in which a group of point objects #1
through # that form stroke #1 are encoded.

(2) Second, byte sequence(s) are included, in which a
metadata object 250 that “describes” stroke #1 is
encoded.

(3) Third, byte sequence(s) are included, in which a
drawing style object 230 that “renders” stroke #1 is
encoded.

<Information about Stroke #2>

The same formatting process is performed for stroke #2,
as in the case for stroke #1 above. In the example of FIG.
48], the values of drawing style object #1 are the same as the
values of drawing style object #2. In this case, it may be
preferable not to repeat the same values in a persisted file
format (SFF) to save file space and to avoid redundancy.
Thus, the same values are not repeated as drawing style
object #2 and, as shown, no drawing style object is included
after the metadata object #2. On the reproduction side, the
ink data processing section 100R will continue using the
same drawing style object #1 to render each stroke object
210 until a new (different) drawing style object 230 is found.
That is, the file generation side and the reproduction side
may agree in advance that, in case a style object is omitted
for a stroke object 210, the same style object used for the
previous stroke object 210 is to be used.

FIG. 48K illustrates a data type of each class when each
class of data object (a metadata object 250, a canvas object,
a drawing style object 230) is serialized and stored in an SFF
file. In FIG. 48K, the “InkDataFile” is an object located at
a data structure root.

In FIG. 48K, the first line of each block indicates the name
of an object defined according to the ink data model of the
present invention. The second and subsequent lines in each
block indicate attributes of the named object in the left
column and their data types (integer, unsigned Char, etc.) in
the right column. The attributes may be encoded using a
suitable method, such as ASN.1, BER and DER encoding
methods, or encoding methods shown in a schema file of
FIG. 10 of the first embodiment such as “sint32-type” and
“float.”

The semantics of attributes explained in FIG. 48K are the
same as the attributes described above in reference to FIG.
48B, except for a portion of the information that is needed
for the purpose of persisting the ink data 200, such as
“strokeCount” which indicates how many stroke objects are
included in a given SFF file.

Data object InkDataFile at the root of the structure
includes binary sequence(s) that are persisted in a file
according to embodiments of the present invention.

In the first line, “Header” is a data needed for the purpose
of persistently storing InkDataFile, and includes information
regarding the version of the ink data model definition, etc.,
for use in processing subsequent binary sequence(s). The
header may further include information such as whether data
is compressed or not, a binary encoding method used, and
other information needed for the application 300 or the
reproducer 100R to reproduce the ink data 200 as intended
by the ink data generation side.

In the second line, “DecimalPrecision” indicates the accu-
racy level of values, such as positional coordinate values,
which are expressed as decimal numbers in the recording-
format. “DecimalPrecision” corresponds to the parameter in
line 4 of FIG. 10 of the first embodiment described above.
The “DecimalPrecision” is not defined in the ink data model,

10

15

20

25

30

35

40

45

50

55

60

65

86

but is a piece of data needed for the purpose of persisting
InkDataFile. Use of the “decimalPrecision” is one of char-
acteristics of the present invention and will be described in
detail below. The decimalPrecision numbers (or accuracy
values) correspond to reciprocal numbers of resolution. For
example, when positional coordinate values are obtainable
at resolution of 0.01 units (0.01 pixels, for example), the
accuracy value expressed as decimalPrecision may be set as
100 (reciprocal of 0.01). For the purpose of more optimal
storage, decimalPrecision value may be expressed in an
exponential form. For example, value 100 can be expressed
as the exponent 2 of a base 10 (in some cases the base might
be omitted). Use of the accuracy value in the ink data
generating and reproducing methods according to embodi-
ments of the present invention will be more fully described
below in reference to FIGS. 58 and 66.

In the third line, “MetaData” corresponds to the metadata
object 250 explained above in reference to FIGS. 48B and
48E.

In the fourth line, “Canvas” corresponds to the canvas
object explained above in reference to FIGS. 48B and 48D.

In the fifth line, “Style” corresponds to the (drawing) style
object explained above in reference to FIGS. 48B and 48F.

In the sixth line, “strokesCount” is a piece of information
necessary for the purpose of persisting InkDataFile, and is a
code or an integer value that indicates the number of strokes
included in the particular InkDataFile. As such, this attribute
is not included in the ink data model itself. Typically, the
strokesCount is added to the ink data code sequence(s) when
they are not to be dynamically modified but instead output-
ted to static, storage-type media (a file, disk, etc.). Alterna-
tively the strokesCount is not set or includes no value
(NULL), for example, when the ink data 200 is to be
continuously outputted for real-time communication with a
remotely-located ink data reproducing device.

In the seventh line, “strokes” relate to a group of object
instances “strokes” (or stroke objects) that are included in
the ink data model, wherein each “stroke” (each stroke
object 210) contains one or more point objects and various
attributes, as will be described in FIG. 48L.

FIG. 48L illustrates information included in each of
strokes 1 through N (strokesCount) number of stroke
objects. In the first and second lines, “Start_value” and
“End_value” correspond to the startParameter 301 and end-
Parameter 303 described above in reference to FIG. 48C. As
described above in reference to the first embodiment, these
two parameters are stored as attributes of stroke object 210
separately from the point objects included in the stroke
object 210.

In the fourth line, “StrokeType variableAlpha” indicates
whether the transparency (alpha) associated with the stroke
is variable along the length of the stroke. “VariableAlpha™ is
a flag that indicates whether the transparency of a stroke
object 210 is allowed to vary along its length or not (i.e.,
fixed), and is typically expressed as a Boolean value (TRUE
or FALSE). In some embodiments, the attribute “StrokeType
variableAlpha” does not exist in the ink data model itself as
shown in FIG. 48B, and is used when the stroke objects are
persisted in an SFF file (InkDataFile). Use of “variableAl-
pha” in various embodiments of the invention will be
described in detail below.

The fifth through eighth values—*“alpha,” “red,” “green”
and “blue”—together constitute the “color” attribute of the
stroke object 210.

In the fifth line, “alpha” indicates a fixed transparency
value (or opacity/ink darkness value) to be used in case
“alpha” of the stroke is not variable, as indicated by

US 9,448,648 B2

87

“variableAlpha=talse” for example. When “alpha” is fixed,
the fixed “alpha” is applied along the length of the stroke
object 210, i.e., to each of the point objects that form the
stroke object 210.

In the sixth through eighth lines, “red,” “green” and
“blue” are information for determining color data of the
stroke object 210 when an RGB color space is used.

In the ninth line, “pointsCount” indicates the number of
points included in the stroke object 210. Similarly to
“strokesCount” described above, “pointsCount” is used for
the purpose of persistenting InkDataFile in an SFF file and
may be determined at a timing when the ink data 200 is to
be outputted to static, storage-type media (as opposed to
more transitory, real-time communication type media).
Alternatively, “pointsCount” may not exist in the data struc-
ture or may include no value (NULL), for example, when the
ink data 200 is to be outputted instead to real-time-type
media.

In the tenth line, “points™ indicate information regarding
each of the point objects that form the stroke object 210.

A point object (“point” in FIG. 48L) is a data object that
includes information regarding each of 1 through N
(pointsCount) number of points included in the stroke that is
being processed. As shown in FIG. 48B, in one stroke object
210, N (pointsCount) number of point objects are included.

In the first line of the box defining “point,” “if” phrase
means that syntax changes for each “point” data object
depending on the variableAlpha value (TRUE or FALSE)
indicating whether the stroke includes a length-wise variable
alpha or not.

(1) The second through sixth lines indicate data included
in “point” data object in case variableAlpha value is
TRUE (i.e., the stroke includes a length-wise variable
alpha value).

In the second line, “x” indicates a first coordinate value of
the point that is being processed.

In the third line, “y” indicates a second coordinate value
of the point being processed.

Thus, “x” and “y” together define 2D coordinates of the
point.

In the fourth line, “radius” indicates the size of a radius of
a circle that includes the point as a center. “Radius” is
an attribute associated with a point object, and is not
necessarily associated with a pen pressure value or pen
tip force. Rather, “radius” is a generalized higher
concept having semantics that encompass lower con-
cepts such as the concept of pressure and force, as will
be more fully described below.

In the fifth line, “alpha” indicates an alpha value associ-
ated with the point object.

It should be noted that the data type of the data included
in the second through fifth lines of the point object is
either an integer (int) or a ushort (or uchar), as opposed
to a floating point (float) data type typically used in
drawing processing applications, as will be more fully
described in reference to FIG. 58 below.

(ii) The seventh through eleventh lines indicate data
included in “point” data object in case variableAlpha
value is FALSE (i.e., the stroke does not include
variable alpha, i.e., the alpha (transparency) value is
fixed for the length of the stroke).

In the seventh line, “x” indicates a first coordinate value
of the point. (The same as the second line described
above.)

In the eighth line, “y” indicates a second coordinate value
of the point. (The same as the third line described
above.)

5

20

25

30

40

45

50

55

88

together define 2D coordinates of the

[Tt}

Thus, “x” and “y

point.

In the ninth line, “radius” indicates the size of a radius of

a circle that includes the point as a center. (The same as
the fourth line described above.)

Because in this case the stroke object 210 has a fixed
alpha value to be applied to each of the point objects forming
the stroke object 210, no alpha value is defined for the point
object.

As described above, syntax of data object “point” changes
depending on the variableAlpha value (TRUE or FALSE)
indicating whether a stroke object 210 includes a variable
alpha value or a fixed alpha value along the length, as will
be more fully described below in reference to FIG. 57.

The twelfth and subsequent lines indicate that syntax
changes for each “point” data object depending on the
reserveRawflag value, to selectively include additional attri-
butes. For example, it is possible to extend (expand) the data
object to include “timestamp” information for each point,
without losing the original information, when the reserveR-
awflag is set TRUE.

The ink data model as well as the data object InkDataFile
in the stroke file format (SFF) defined by the syntax and
semantics of the ink data model according to embodiments
of the present invention have been described above in
reference to FIGS. 48A-481. Next, the ink data processing
section 100(1007T) is described, which is operable to gen-
erate and output the ink data 200 having such data structure
according to embodiments of the present invention.

[3] Ink Data Processing Section (FIGS. 49-63)

FIG. 49 is a functional block diagram of an ink data
processing section 100T according to embodiments of the
present invention. Ink data processing section 100T corre-
sponds to 100T in FIG. 5. The ink data processing section
100T generates ink data according to the definition of the ink
data model as described in FIGS. 48A-48L above based on
the pen event and pen event context information (INPUT 2)
provided by an input device. The ink data processing section
100T outputs the generated ink data 200, for example, in an
SFF file (“InkDataFile”) described in FIGS. 48J-48L above,
in binary sequences, byte sequences, in packets, etc.

The ink data processing section 100T includes an ink data
generation section 120 and an ink data formatting section
140. The ink data generation section 120 corresponds to
stroke data object handling section 122 in FIG. 7. The ink
data generation section 120 receives various types of device-
dependent input data (“INPUT1”), such as pen event data of
Type 1 that includes pen pressure data and pen event data of
Type 2 that does not include pen pressure data. In FIG. 49,
pen event data of Type 1 includes timestamp information
(e.g., “double timestamp”), plural sets of XY coordinates
(e.g., “float x, y”) and pen pressure data (e.g., “float pres-
sure”), and pen event data of Type 2 includes timestamp
information (e.g., “double timestamp”) and plural sets of
XY coordinates (e.g., “float x, y”). Instead of receiving the
timestamp information, the ink data generation section 120
may use the time at which it receives the pen event data, for
example, as the timestamp information.

The ink data generation section 120 also receives context
information (“INPUT2”) about the pen event data from the
application or operating system used to input the pen event
data. For example, in case of a stroke drawn using a drawing
application, the context information (INPUT 2) may include
various parameter values that are set by the drawing appli-
cation to draw the stroke. That is, the context information
(INPUT 2) may include configuration information defined
for the purpose of generating (drawing) strokes. The context

US 9,448,648 B2

89

information (INPUT 2) may be provided for the pen event
data of Type 1 and the pen event data of Type 2, respectively,
from two different applications if the pen event data of Type
1 and Type 2 are respectively generated by the two appli-
cations. Alternatively, the context information (INPUT 2)
for the pen event data of Type 1 and Type 2 may be provided
by the same application or operating system commonly used
to generate the pen event data of Type 1 and Type 2.

As described above in reference to the stroke object
handling section 122 in FIG. 7 in. the first embodiment, the
ink data generation section 120, based on the received pen
event data of Type 1 of Type 2 and the received context
information (INPUT 2), outputs a series of point objects
each including XY coordinates (position) data and radius
and alpha data regarding a point. As described above in
reference to data object “point” in FIG. 48L, radius is an
attribute associated with a point and is not necessarily
associated with pressure or pen tip force, but rather is a
generalized device-independent higher concept having
semantics that encompass lower level concepts such as
pressure and pen tip force, according to the definition of the
ink data model of embodiments of the present invention.

The ink data formatting section 140 receives the data for
each point including XY coordinates and radius and alpha
data of the point, formats the inputted data into a data
structure corresponding to the data structure of the point
object, for example as described in FIG. 48L above, and
outputs the formatted data. The data in the formatted point
object are of data types of “int” (integer) “ushort,” “uchar,”
etc., as opposed to being of floating point data type (“float™)
typically used in drawing processing applications.

FIG. 50A is a flow diagram illustrating a process executed
by the ink data generation section 120 of FIG. 49, to output
radius and alpha information as attributes of a point object
according to embodiments of the present invention. Descrip-
tion of outputting XY coordinates data (Position (X, Y)) is
omitted because typically the ink data generation section
120 merely passes the XY coordinates data that it receives
onto the ink data formatting section 140.

In step S1201, the ink data generation section 120 obtains
necessary context information (INPUT 2) for each stroke
that includes the point to be processed. Sample context
information (INPUT 2) will be described below in reference
to FIG. 50B.

In step S1202, it is decided whether the inputted data
includes pen pressure data or not.

In step S1203, after it is decided in step S1202 that the
inputted data includes pen pressure data (““TRUE”), the pen
pressure data of the point may be used to derive a parameter
(vn—velocity) at that point. It can be observed that when a
greater pen pressure is applied at a point, the velocity at that
point becomes slower. Thus, vn can be correlated generally
in inverse proportion to the pressure data.

In step S1204, after it is decided in step S1202 that the
inputted data does not include pen pressure data (“FALSE”),
time information of the point is obtained. The time infor-
mation may be received as input information for each point
that forms a stroke, or may be set as the time at which the
ink data generation section 120 (or the ink data processing
section 1007T) receives the point information.

In step S1205, velocity of the point is derived based on the
time information of the point and adjacent point(s), as will
be more fully described below in reference to FIG. 51.

In step S1207, radius information of the point is obtained
based on vn (velocity), phase information, and pen type
information, as will be more fully described below in
reference to FIG. 52.

10

15

20

25

30

35

40

45

50

55

60

65

90

In step S1209, alpha (transparency or opacity) informa-
tion of the point is obtained based on vn (velocity), phase
information, and pen type information, as will be more fully
described below in reference to FIG. 55.

FIG. 50B illustrates a sample GUI of an application or an
operating system that may be used to set some of the context
information (INPUT 2) related to the ink data generation
section 120. The context information (INPUT 2) provided to
the ink data generation section 120 may include, for
example, the maximum and minimum radius values
(“Cntx1”), the maximum and minimum velocity values
associated with the maximum and minimum radius values,
as will be described in reference to FIG. 51 below (“Cntx2”),
functions used to derive the radius or alpha values
(“Cntx3”), exceptional values that may be set for the BEGIN
and END phase points of a stroke (see FIG. 53) (“Cntx4”),
and pen type information (not shown). The context infor-
mation (INPUT 2) may be defined in advance for the ink
data generation section 120 or, as shown in FIG. 50B, may
be explicitly defined by a user via the setting GUI.

FIG. 51 is a diagram illustrating the process of deriving
velocity based on the time information in step S1205 of FIG.
50A, according to embodiments of the present invention.

Velocity is derived by dividing distance by time. The
denominator of the division may be a difference between the
time at which the current point coordinate is obtained and
the time at which the previous point coordinate is obtained.
The numerator of the division may be a difference (distance)
between the current point coordinate and the previous point
coordinate. When a sampling rate is fixed (when the denomi-
nator is fixed), displacement between the current point
coordinate relative to the previous point coordinate may be
used to indicate velocity.

In embodiments of the present invention, velocity is
outputted as a parameter value (vn) with the minimum value
of 0.0 and the maximum value of 1.0, i.e., as a min-max
normalized velocity value, which may be set in “Cntx2” of
FIG. 50B.

FIG. 52 is a flow diagram illustrating the process of
deriving a radius, which is an attribute of a point object, in
step S1207 of FIG. 50A. In general a radius is derived from
parameter vn, which may be a normalized velocity value
calculated in step S1205 above, or may be derived from the
pen pressure data in step S1203, according to embodiments
of the present invention.

In step S1207_01, the “phase” of a current point is
determined. Referring additionally to FIG. 53, which illus-
trates the definition of “phase” of a point in a stroke
according to embodiments of the present invention, phase is
a concept that indicates where (at which position) within a
stroke the current point is located. For example, the first
point of a stroke is of phase BEGIN, and the last point of a
stroke is of phase END. The points between the first point
and the last point are of phase MIDDLE. Phase of each point
can be determined for each pen event type, such as Pen
Down, Pen Move and Pen Up types. A Pen Down event is
an event in which a user starts to draw a stroke using a
pointer (pen, finger, etc.), a Pen Up event is an event in
which the user finishes drawing the stroke using the pointer,
and a Pen Move event is an event that occurs between the
Pen Down event and the Pen Up event.

In step S1207_04, after it is determined in step S1207_01
that the point to be processed is of phase BEGIN or END,
i.e., the point is the first point or the last point of the stroke,
one or more points may be added to the beginning of the
stroke (ahead of the first point) and to the ending of the
stroke (after the last point).

US 9,448,648 B2

91

In step S1207_02, for each of the points added to the
beginning or the ending of the stroke, an exceptional radius
value set in “Ctnx4” of FIG. 50B is set as a radius for the
point, such as a radius of O or a radius that is larger than (e.g.,
twice) the normal radius, as will be more fully described
below in reference to FIG. 72.

In step S120703, after it is determined in step S1207_01
that the point to be processed is of phase MIDDLE, i.e., the
point is neither the first point nor the last point of the stroke,
the pen type of a pen being used to enter the pen event data
is determined.

In step S1207_05, after it is determined in step S1207_03
that the pen type is normal (default), a radius is derived from
parameter vn using a normal (default) function, such as the
exponential attenuation (or damping) function of FIG. 54
(see “Attenuate” in FIG. 54).

In step S1207_07, after it is determined in step S1207_03
that the pen type is special, such as a pen having a particu-
larly soft pen tip, a radius is derived from parameter vn by
using a special function such as “Sigmoid” and “Periodic”
functions in FIG. 54. Any of the normal or special functions
may be explicitly defined or modified as part of the context
information “Cntx3” of FIG. 50B via the setting GUIL

FIG. 54 is a graph that illustrates three functions for
deriving a radius from parameter vn (velocity), as used in
steps S1207_05 and S1207_07 of FIG. 52, according to
embodiments of the present invention.

The horizontal axis indicates parameter vn (velocity) and
the vertical axis indicates radius.

The solid line referred to as “Attenuate” indicates a
normal attenuation (or damping) function used in step
S1207_05 in FIG. 52. The function defines a relationship in
which, when vn increases, radius is exponentially attenu-
ated. The normal function is used for normal (default) types
of pens. Use of this function to effect such vn-to-radius
conversion is based on the following observation.

[Observation A] Line width that increases due to pen
pressure corresponds to the area into which ink seeps out in
paper.

[Observation B] The faster a pen moves the shorter time
period the pen has, to have ink seep out at each point.

Based on Observations A and B above, it is theorized that
line width increases when a pen moves slower, while line
width decreases when a pen moves faster. The theory is
based on that, as a pen moves faster, the pen has a shorter
period of time at each point in contact to have ink seep out
in paper to form a line (stroke). Line width is considered a
series of points each having radius. Accordingly, for normal
pens, the attenuation (damping) function is used to convert
parameter vn to radius, such that when velocity increases
radius is exponentially attenuated, according to embodi-
ments of the present invention.

It should be noted that, even with respect to a device
incapable of obtaining pen pressure data, the ink data
processing section 100T of the present invention can calcu-
late or obtain velocity information using timestamp infor-
mation. For example, the ink data processing section 100T
may use the local timing at which it receives pen stroke
information from such devices to thereby calculate or obtain
timestamp information, based on which velocity vn can be
determined for each point. Therefore, the ink data process-
ing section 100T can reliably determine and output radius of
each point based on velocity vn, with respect to various
types of devices including devices capable of obtaining
pressure data and devices incapable of obtaining pressure
data.

20

30

40

45

55

92

In FIG. 54, the broken line referred to as “SIGMOID”
indicates a special function in which attenuation occurs in
steps, as opposed to exponentially, and the broken line
referred to as “PERIODIC” indicates another special func-
tion which is periodic. Both of these special functions may
be applied to derive a radius from velocity for special types
of pens in step S1207_07 of FIG. 52, as will be more fully
described below in reference to FIG. 71.

It should be noted that application of any of these func-
tions described above to convert velocity to point radius may
be in real time. Alternatively, the conversion of parameter vn
to radius may be performed in advance and the resulting data
may be stored in a look-up table, which may be accessible
by the ink data processing section 100T.

FIG. 55 is a flow diagram illustrating the process of
deriving an alpha value indicative of transparency (or opac-
ity) of each point in step S1209 of FIG. 50A, according to
embodiments of the present invention.

In step S1209_03, the pen type of a pen being use to enter
the pen event data is determined from the context informa-
tion (INPUT 2).

In step S1209_05, after it is determined in step S1209_03
that the pen type is normal (default), an alpha is derived from
parameter vn using a normal (power) function, such as the
“POWER” function shown in FIG. 56

In step S1209_07, after it is determined in step S1209_03
that the pen type provided by the context information
(INPUT 2) is special, such as a pen having a particularly soft
pen tip, an alpha is derived from parameter vn by using a
special function such as “SIGMOID” function shown in
FIG. 56.

FIG. 56 is a graph that illustrates two functions for
deriving an alpha (transparency/opacity) from parameter vn
(velocity), as used in steps S1209_05 and 1209_07 of FIG.
55, according to embodiments of the present invention.

The horizontal axis indicates parameter vn and the verti-
cal axis indicates alpha indicating transparency. For
example, alpha 0.0 may mean full transparency and alpha
1.0 may mean full non-transparency, i.e., full opacity.

The solid line referred to as “POWER” indicates a normal
power function used in step S1209_05 in FIG. 55. The
function defines a relationship in which, when velocity vn
increases, alpha exponentially increases. The normal
(power) function is used for normal (default) types of pens.
Use of the normal function to effect such conversion from vn
to alpha is based on the following observation.

[Observation C] Ink darkness that increases due to pen
pressure corresponds to the area into which ink seeps out in
paper.

[Observation D] The faster a pen moves the smaller
amount of ink seeps out from the pen at each point (because
the pen is in contact at each point for a shorter time period).

Based on Observations C and D above, it is theorized that
ink darkness increases (opacity increases) when a pen moves
slower, while ink darkness decreases (transparency
increases) when a pen moves faster. The theory is based on
that, as a pen moves slower, more ink seeps out from the pen
into paper at each point in contact to form a darker line
(stroke) and, as the pen moves faster, less ink seeps out from
the pen at each point in contact to form a lighter line (stroke).
Accordingly, for normal pens, the power function is used to
convert parameter vn to alpha, such that when velocity
increases alpha (transparency) exponentially increases,
according to embodiments of the present invention.

It should be noted that, even with respect to a device
incapable of obtaining pen pressure data, the ink data
processing section 1007 of the present invention can reliably

US 9,448,648 B2

93

calculate or obtain velocity information using timestamp
information. For example, the ink data processing section
100T may use the timing at which it receives pen stroke
information from such devices to thereby calculate or obtain
timestamp information, based on which velocity vn can be
determined. Therefore, the ink data processing section 100T
can reliably determine and output alpha based on velocity
vn, with respect to various types of devices including
devices capable of obtaining pressure data and devices
incapable of obtaining pressure data.

In FIG. 56, the broken line referred to as “SIGMOID”
indicates a special function, which is an example of an
increasing function that may be used to derive alpha from
velocity for special types of pens in step S1209_07 of FIG.
55.

It should be noted that application of any of these func-
tions described above in reference to FIG. 56 may be in real
time. Alternatively, the conversion of parameter vn to alpha
may be performed in advance and the resulting data may be
stored in a look-up table, which may be accessible by the ink
data processing section 100T.

As described above, the ink data generation section 120 of
the ink data processing section 100T determines radius and
alpha values of each point object based on inputted pen
event data, which may or may not include pen pressure data.
As shown in FIG. 49, the point data driving section 120
outputs the radius and alpha information in “float” data type
in its own internal memory. Then, the ink data formatting
section 140 receives the radius and alpha information (float)
as attributes of the point object, and outputs them in a stroke
file format (SFF, see FIG. 48L) or in a stroke message format
(SMF).

FIG. 57 is a flow diagram illustrating an ink data format-
ting process of formatting inputted radius and alpha infor-
mation, as well as the inputted X and Y coordinate data, into
a stroke file format (SFF) or into a stroke message format
(SMF). Generally, the formatting process S140 is performed
by the ink data formatting section 140 of the ink data
processing section 100T as part of a process to generate the
ink data 200.

<Serialization of Data Object InkDataFile>

In step S1401, when serializiing InkDataFile in the SFF,
ink data and information necessary for the purpose of
persistenting the InkDataFile in an SFF file is serialized. As
an example of such necessary information, a decimalPreci-
sion value is serialized and encoded. In the illustrated
example, value 100 is used as the decimalPrecision value of
“unsigned int” data type, and value 100 is encoded using
ASN.1, BER encoding method, or encoding methods shown
in a schema file of FIG. 10 of the first embodiment such as
“sint32-type” and “float.” On the other hand, when serial-
iziing InkDataFile in the SMF suited for real-time transmis-
sion or messaging, the information necessary for the purpose
of persistenting the ink data in the SFF may not be needed
and thus step S1401 may be omitted when formatting the ink
data in the SMF. In step S1402, a strokesCount value for the
InkDataFile is encoded in the SFF (see FIG. 48L). On the
other hand, when formatting to the SMF, a strokesCount
value is not included and, thus, step S1402 may be omitted
and the process may instead encode data indicating the last
of all the strokes being processed.

<Serializiing of a Data Object “Stroke”>

The following steps starting with steps S1403 included in
a larger rectangle in dotted lines in FIG. 57 are performed for
each of the N (strokesCount) number of strokes included in

10

15

20

25

40

45

55

94
the InkDataFile. As a result, N number of stroke objects are
formatted using a defined encoding method and are output-
ted.

In step S1405, a variableAlpha value is encoded in the
stroke object 210 being processed. As described above, the
variableAlpha value (TRUE/FALSE) indicates whether the
alpha value of the stroke is variable along the length of the
stroke.

In step S1406, a pointsCountvalue, which indicates the
number of point objects included in the stroke object 210, is
encoded. If the pointsCountvalue is not available, for
example, in case of real-time type applications (i.e., when
formatting to the SMF), step S1406 may be omitted and the
process may instead encode data indicating the end of a
stroke being processed.

<Serialization of Data Object “Point”>

The following steps starting with step S1407 included in
a smaller rectangle in dotted lines in FIG. 57 are performed
for each of the pointsCount number of points included in the
stroke being formatted. As a result, the pointsCount number
of point objects are formatted and are outputted.

In step S1409, it is determined whether the alpha value of
the stroke, which includes the point being processed, is
variable or not, i.e., it is determined whether the variable-
Alpha value is TRUE or FALSE.

In step S1411, after it is determined in step S1409 that
alpha is variable for the stroke along its length (“TRUE”)
and thus alpha may vary from a point to another point, XY
coordinate values as well as the radius and alpha values are
encoded for the point, as will be more fully described below
in reference to the upper portion of FIG. 58.

In step S1413, after it is determined in step S1409 that
alpha is not variable for the stroke (“FALSE”), only the XY
coordinate values and the radius value are encoded for the
point, and alpha is not encoded, as will be more fully
described below in reference to the lower portion of FIG. 58.

At this point, the ink data 200 arranged in the defined data
structure according to embodiments of the invention may be
outputted to various types of media in a suitable file format
(e.g., SFF) or in a message format (e.g., SMF).

FIG. 58 illustrates an implementation example of steps
S1411 and S1413 of FIG. 57 described above, according to
embodiments of the present invention.

Lines 01-07 in the upper portion of FIG. 58 are pseudo-
code corresponding to step S1411 of FIG. 57, when the XY
coordinate values as well as both the radius and alpha values
are encoded for the point, in case the alpha value is variable
along the length of the stroke.

Lines 08-13 in the lower portion of FIG. 58 are pseudo-
code corresponding to step S1413 of FIG. 57, when the XY
coordinate values and the radius value are encoded but the
alpha value is not encoded for the point, in case the alpha
value is not variable for the stroke.

In FIG. 58, the sections indicated by “A” and “B” show
how the decimalPrecision value, described above, is utilized
in implementations of embodiments of the present inven-
tion.

Preferably, the XY coordinate values and the radius value
of'a point are kept in float data type or double data type until
immediately before the output timing so as to maintain the
highest accuracy possible for the values in the processor. On
the other hand, it may be desirable to use the smallest
number of bits to represent each value for the purposes of
making the ink data 200 widely (commonly) understandable
by different data interpretation methods and for the purpose
of efficiently compressing the resulting ink data 200.

US 9,448,648 B2

95

Therefore, in step S1411, input X, Y and radius values are
first multiplied by the decimalPrecision value indicative of
the resolution (magnification) to standardize their units, as
shown in “A” in FIG. 58, and thereafter are converted (cast)
to int (integer) data type, as shown in “B”, as shown in the
upper portion of FIG. 58.

In step S1413 as shown in the lower portion of FIG. 58
also, similarly to step S1411, input X, Y and radius values
are first multiplied by the decimalPrecision value and there-
after are cast to int (integer) data type.

In this connection, FIG. 59 illustrates conversion of
floating data type to integer data type used in steps S1411
and S1413 of FIG. 57, according to embodiments of the
present invention.

In FIG. 59, input data 161 stored as of float data type is
an example according to the IEEE 754 standard. In the input
data 161, “s” is an encoding bit, “exponent™ is an exponent
of a floating-point number, and “fraction” is a mantissa of a
floating-point number.

The input data 161 is multiplied by the decimalPrecision
value, as indicated by “A” in FIG. 58 and described above,
to produce multiplied input data 163 of FIG. 59. The
multiplied input data 163 is also a floating-point number
including an exponent and a fraction (mantissa).

The multiplied input data 163 is converted (cast) from
“float” to “int” (or “short” or “ushort”) as indicated by “B”
in FIG. 58 and described above, to thereby produce an
absolute value 165. The absolute value 165 is no longer a
floating-point number. In the illustrated embodiment, XY
coordinate values as well as the radius value are all cast
(converted) to int (integer) values, though they may be cast
to any non-floating-point data type.

FIG. 60 illustrates the increased compression efficiency
resulting from the data format conversion (casting) from
“float” to “int” described above, according to embodiments
of the present invention.

In FIG. 60, decimal numbers are used for ease of expla-
nation and understanding. In the illustrated example, the
circular constant pi (Tr) is multiplied by different indices of
10 (to the power of 0, +1, +2).

The left-hand side of FIG. 60 indicates values obtained
prior to the processing of steps S1411 and S1413 of FIG. 58.

The right-hand side of FIG. 60 indicates values obtained
after the processing of steps S1411 and S1413 of FIG. 58

The top three values and the last value included in
rectangles on the left-hand side are different floating-point
numbers (3.0, 3.1 and 3.14) before the processing, but they
all are converted to 3 after the processing as shown on the
right-hand side. While the accuracy of each number is
somewhat compromised by the conversion, the frequency of
use of the same value (e.g., 3 in this example) increases to
facilitate efficient processing of the values in a processor,
such as efficient compression of the values. For example,
data expressed in data type integer may be encoded using
ASN.1, BER or DER encoding methods into a file or
message protocol to be outputted.

FIG. 61 is a flow diagram illustrating a process, which
may be executed in the “ink data formatting section” 140 of
FIG. 49 to compress attributes of defined ink data objects,
according to embodiments of the present invention.

In step S181, as a preliminary step, the generated ink data
200 to be compressed should be quantized as integer pre-
cision values, as performed in steps S1411 and S1413 of
FIG. 57.

In step S183, the ink data formatting section 140 deter-
mines the type of data compression. For example, the
determination may depend on the output format type. Also,

10

20

30

40

45

55

60

96

the determination may be based on whether the compression
is for applications that require real-time data or for appli-
cations that utilize data in storage-type media. If no com-
pression is to be performed (“NONE”), the process outputs
the ink data values in integer data type “as is.” Using the top
three values described in FIG. 60 for example, value “+3”
represented in 32 bits may be outputted three times.

In step S185, after it is determined in step S183 that the
first type of compression method is selected, the process
categorizes data sequences such as X coordinate values, Y
coordinate values, radius values, etc., into streams according
to their attributes, and applies the first type of compression
method to the generated ink data 200. For example, the first
type of compression method is a run-length coding method.
Using the top three values described in FIG. 60 for example,
a code is used that indicates that value “+3” is repeated 3
times. The efficiency of the suggested coding technique can
be improved by using several coding methods, such as by
performing delta encoding (data difference) on the values,
before applying run-length coding. This will increase the
number of repeated values when the change between values
is relatively constant.

In step S187, after it is determined in step S183 that the
second type of compression method is selected, the process
applies the second type of compression method to the
generated ink data 200. For example, the second type of
compression method is an entropy coding method using
exponential-Golomb code. It is a variable length coding
method, which applies a shorter bit length to a value with a
smaller absolute value, such as +3, as compared to values
with larger absolute values.

<Modifications to the Ink Data Processing Section 100T
and Ink Data Generating Method>

As described above, the ink data processing section 100T
according to embodiments of the present invention is
capable of processing data received from various types of
devices, some including pen pressure data and others not
including pen pressure data, to derive radius and/or alpha
(transparency/opacity) information as attributes of points
forming each stroke, to thereby generate the device-inde-
pendent ink data 200. The ink data processing section 100T
outputs the generated ink data 200 in various formats such
as in a file format (e.g., SFF) or a message format (e.g.,
SMF).

In the example of FIG. 50A, in case the input data
includes pen pressure data (when a result of step S1202 is
TRUE), radius and transparency information is derived from
the pen pressure data, without using timing information,
though the present invention is not limited to such imple-
mentation.

A function may be used, which receives timing informa-
tion and pen pressure data as input and outputs radius. In this
case, it becomes possible to change the stroke width and/or
stroke transparency based not only on pen pressure data but
also on the pen velocity.

While velocity was derived in various embodiments
described above, when a pen includes an acceleration sensor
for example or when only values corresponding to accel-
eration are obtainable, acceleration may be used. For
example, by integrating acceleration to derive velocity,
processing similar to that described above may be utilized.

FIG. 62 is a flow diagram illustrating another example of
a process executed in the ink data generation section 120 of
FIG. 49 to output radius information as an ink data attribute,
alternatively to the method described above in reference to
FIG. 52.

US 9,448,648 B2

97

In step S192, similarly to step S1202 of FIG. 504, it is
determined whether the inputted data includes pen pressure
data or not.

In step S196, after it is determined in step S192 that the
inputted data does not include pen pressure data (“FALSE”),
radius is calculated using the relationship between velocity
derived from timestamp information and radius, as
explained in reference to FIG. 54 above. That is, the rela-
tionship is used in which, when velocity increases, radius is
attenuated.

In step S194, after it is determined in step S192 that the
inputted data includes pen pressure data (“TRUE”), both the
inputted pressure data and timestamp information are used
to derive radius. Step S192 uses a partial differential func-
tion including two variables, wherein (i) when velocity
increases radius decreases, in case the pen pressure is fixed,
and (ii) when the pen pressure increases radius increases, in
case the velocity is fixed. Thus, it is possible to encode
radius of each point for the ink data 200 based on both
velocity and pen pressure of the point.

In step 198, the radius derived in step S196 or in step S194
is outputted.

FIG. 63 is a flow diagram illustrating another example of
a process executed in the ink data generation section 120 of
FIG. 49 to output variable alpha information as an ink data
attribute, alternatively to the method described above in
reference to FIG. 55.

In step S2002, similarly to step S1202 of FIG. 504, it is
determined whether the inputted data includes pen pressure
data or not.

In step S2006, after it is determined in step S2002 that the
inputted data does not include pen pressure data (“FALSE”),
alpha (transparency/opacity) is calculated using the relation-
ship between velocity derived from timestamp information
and alpha, as explained in reference to FIG. 56 above. That
is, the relationship is used in which, when velocity increases,
alpha also increases (becomes more transparent).

In step S2004, after it is determined in step S2002 that the
inputted data includes pen pressure data (“TRUE”), both the
inputted pressure data and timestamp information are used
to derive a variable alpha value. Step 2004 uses a partial
differential function including two variables, wherein (i)
when velocity increases alpha increases (becomes more
transparent), in case the pen pressure is fixed, and (ii) when
the pen pressure increases alpha decreases (becomes more
opaque), in case the velocity is fixed. Thus, it is possible to
encode alpha (transparency) of each point for the stroke
object 210 of the ink data 200 based on both velocity and pen
pressure of the point.

In step S2008, the alpha derived in step S2006 or in step
S2004 is outputted.

The processes of FIGS. 62 and 63 may be used together
such that both radius and alpha values may be derived from
the inputted pressure data and timestamp information. Alter-
natively, only the radius value or only the alpha value may
be derived from the inputted pressure data and timestamp
information.

Sample functions that transform velocity (vn) to radius
and alpha are described above in reference to FIGS. 54 and
56. In general, what functions should be used to transform
velocity (vn) to radius and/or alpha depends on the type of
pen (or pen tip type) and the type of “paper” that the sensor
surface is supposed to simulate (e.g., Japanese paper, carbon
paper, regular paper, copy paper, photographic paper, ink
absorbing paper, etc.) Thus, any of the functions selected to
transform velocity to radius and/or alpha may be adjusted
depending on the type of pen and/or the type of paper. In

10

15

20

25

30

35

40

45

50

55

60

65

98

other words, radius and/or alpha derived from velocity may
change depending on the type of pen and/or the type of
paper.

In accordance with a further aspect of the present inven-
tion, pen pressure data utilized in various embodiments of
the present invention as described above may be replaced
with other attribute values that may be received from various
types of input devices, such as pen angle (or pen tilt) data,
pen rotation (pen roll) data, etc. These attribute values, such
as the pen angle/tilt data, may be used to derive radius and/or
transparency (alpha) information according to various
embodiments of the present invention, in place of the pen
pressure data used in the above-described examples. For
example, some pen-type input devices are capable of gen-
erating pen angle (pen tilt) data indicative of the angle
formed by the pen axis relative to the sensor surface or to the
normal to the sensor surface. It is observed that a pen held
normal to the sensor surface tends to apply more pressure to
the sensor surface than a pen that is tilted to thereby extend
in a direction more parallel to the sensor surface. Thus, the
pen angle/tilt data may be correlated to a parameter vn
(velocity) similarly to how the pen pressure data may be
correlated to vn.

For example, a function may be used which codifies a
relationship in which the more straight (i.e., closer to the
normal to the sensor surface) the pen is held relative to the
sensor surface (i.e., more pressure), the slower the velocity
(vn) becomes. Once vn is derived from the angle/tilt data,
the functions similar to those used to transform vn to radius
and/or alpha information described above may be used. That
is, the pen angle/tilt data may be correlated to vn, which is
then converted to radius and/or alpha information. On the
other hand, it may also be observed that a pen held normal
to the sensor surface tends to produce a narrower stroke than
a tilted pen that tends to produce (draw) a wider stroke,
perhaps due to an increased contact area between the tilted
pen tip and the sensor surface. In this case suitable functions
may be used which codify such relationship, in which the
more straight the pen is held relative to the sensor surface,
the faster the velocity (vn) becomes to produce a narrower
stroke. Once vn is derived from the angle/tilt data, vn can
then be converted to radius and/or alpha information using
the functions described above. What functions should be
used to transform the angle/tilt data to vn depends on the
type of pen (or pen tip type) and the type of “paper” that the
sensor surface is supposed to simulate (e.g., Japanese paper,
carbon paper, regular paper, copy paper, photographic paper,
ink absorbing paper, etc.) It may further be observed that a
pen held normal to the sensor surface tends to produce a
wider and darker stroke than a tilted pen that tends to
produce a narrower and finer (more transparent) stroke.
Then, without first correlating the angle/tilt data to vn and
converting vn to radius and/or alpha information for each
point, suitable functions may be used that transform the pen
angle/tilt data directly to radius and/or alpha information in
some embodiments. Similarly, in some embodiments, suit-
able functions may be used that transform the pen pressure
data, if available, directly to radius and/or alpha information
instead of first converting the pressure data to vn and then
converting vn to radius and/or alpha information for each
point.

[4] Ink Data Processing Section/Decoder (FIGS. 64-66)

FIG. 64 is a diagram illustrating a relationship between
the ink data processing section 100R and various applica-
tions 300-1, 300-2, 300-7, according to embodiments of the
present invention. Ink data processing section 100R corre-
sponds to 100R in FIG. 22 of the first embodiment.

US 9,448,648 B2

99

As shown in FIG. 45, the ink data processing section
100R is essentially a software library which, in response to
requests from various applications 300, extracts the ink data
200 stored in a file or message format in a memory (“RAM”)
or various types of media (e.g., HardDisk) to a memory
location and in the data format usable by the applications.
For example, when the application 300-1 is a drawing
processing application (utilizing graphic processing section
300 in FIG. 5), the ink data processing section 100R outputs
to the graphic processing section 300 necessary data objects
“Stroke”, “Point”, etc. (wherein each stroke and/or point is
associated with radius and/or alpha information), but does
not output unnecessary data objects “Author”, etc. As
another example, when the application 300-2 requires only
author information for the purpose of determining e-confer-
ence participants, for example, the ink data processing
section 100R outputs data object Author in metadata object
250. In embodiments of the present invention, the ink data
processing section 100R is realized as an ink data reproduc-
ing process S200 executed by a processor, as will be
described in FIG. 65. Below, the ink data reproducing
process S200 will be described in connection with a drawing
process wherein the application 300 is a drawing application
300-1.

FIG. 65 is a flow diagram illustrating the ink data repro-
ducing process S200 of reproducing (or extracting) gener-
ated ink data 200 to obtain radius and alpha information, as
well as X and Y coordinate data, and outputting the obtained
information and data, in response to a request from the
drawing application 300-1, according to embodiments of the
present invention. The drawing application 300-1 may then
use the radius and alpha information to give more realistic
looks and nuanced expressions to the strokes as drawn/
rendered on a screen (see FIGS. 68-72). Essentially, the ink
data reproducing process S200 is a reverse process to the
process of generating (formatting) the ink data S140
described in reference to FIG. 57 above.

<Reproduction or Extraction of Data Object InkDataFile>

In step S2001, the context information (INPUT 2) (or
configuration information) for the ink data 200 that includes
the stroke to be processed is extracted, such as the decimal-
Precision value. The reproduction processing reversely cor-
responds to the encoding processing in step S1401 of FIG.
57.

In step S2002, the strokesCount value included in the data
object InkDataFile, as shown in FIG. 48L, is extracted. If the
strokesCount value is not available, for example, in real-
time type applications, step S2002 may be omitted and the
process may instead determine when to end the processing
by reproducing the data indicating the last of all strokes
included in the InkDataFile.

<Reproduction of Data Object “Stroke”>

The following steps starting with step S2003 included in
a larger rectangle in dotted lines in FIG. 65 are performed for
each of the N (strokesCount) number of strokes included in
the InkDataFile. As a result, N number of stroke objects are
reproduced and outputted.

In step S2005, “variableAlpha” in the data object “stroke”
(see FIG. 48L) is extracted. As described above, the variable
Alpha value (TRUE/FALSE) indicates whether the stroke
being processed includes an alpha value that is variable
along the length of the stroke.

In step S2006, “pointsCountvalue,” which indicates the
number of point objects included in the stroke object 210, is
obtained. If the pointsCountvalue is not available, for
example, in real-time type applications, step S2006 may be

10

15

20

25

30

40

45

50

55

60

65

100

omitted and the process may instead determine the end of
processing by reproducing the data indicating the end of a
stroke being processed.

<Reproduction of Data Object “Point”>

The following steps starting from step S2007 included in
a smaller rectangle in dotted lines in FIG. 65 are performed
for each of the pointsCount number of point objects included
in the stroke object 210 being reproduced. As a result, the
pointsCount number of point objects are reproduced and
outputted.

In step S2009, it is determined whether alpha of the stroke
being processed is variable or not, i.e., it is determined
whether “variable Alpha” is TRUE or not.

In step S2011, after it is determined in step S2009 that
“variableAlpha” is TRUE, XY coordinate values as well as
the radius and alpha values are decoded and reproduced for
the point and are outputted. The step is to reverse (convert)
the data encoded in step S1411 of FIG. 57 back to a data
format requested by (usable by) a particular application that
is requesting the reproduced ink data 200.

In step S2013, after it is determined in step S2009 that
“variableAlpha” is FALSE, XY coordinate values and the
radius value are decoded and reproduced for the point and
are outputted, while the alpha value is set as a fixed value for
the entire stroke, as will be more fully described below in the
lower portion of FIG. 66. The step is to reverse (convert) the
data encoded in step S1413 of FIG. 57 back to a data format
requested by (usable by) a particular application that is
requesting the reproduced ink data 200.

Accordingly, the ink data reproducing process S200
extracts XY coordinate values and the radius value, as well
as the alpha value if any, from data object “point.”

FIG. 66 illustrates an implementation example of steps
S2011 and S2013 of FIG. 65 described above, according to
embodiments of the present invention.

Lines 01-07 in the upper portion of FIG. 66 are pseudo-
code corresponding to step S2011 of FIG. 65, when the XY
coordinate values as well as both the radius and alpha values
are extracted for the point, in case the alpha value is variable
along the length of the stroke including the point (i.e.,
different points forming the stroke may have different alpha
values).

Lines 08-14 in the lower portion of FIG. 66 are pseudo-
code corresponding to step S2013 of FIG. 65, when the XY
coordinate values and the radius value are extracted for the
point while the alpha value is set as a fixed value (e.g., “1.0”
in the illustrated example), in case the alpha value is not
variable along the length of the stroke including the point
(i.e., all points forming the stroke have the same alpha
value).

In FIG. 66, the sections indicated by “A” and “B” show
how the decimal Precision value, described above, is utilized
in implementations of embodiments of the present inven-
tion. Specifically, using an inverse function of the function
shown in FIG. 58 above, in step S2011, input X, Y and radius
and alpha data are first converted (cast) back from int
(integer) to float (floating point number) data type, as shown
in “INV_B” in FIG. 66. Thereafter the X, Y and radius data
are divided by the decimalPrecision value indicative of the
resolution (magnification), as shown in “INV_A” in the
upper portion of FIG. 66.

In step S2013 shown in the lower portion of FIG. 66,
similarly to step S2011, input X, Y and radius data are first
cast to float (floating point number) data type, and thereafter
divided by the decimalPrecision value. On the other hand,
the alpha value is set as a fixed value, such as “1.0” in the
illustrated example.

US 9,448,648 B2

101

Thus, when the application 300 is a drawing application,
for example, which requires input data to be in “float” data
type, the generated ink data 200 including data in integer
type are reproduced (decoded) back to the requested floating
point number data type, or any other non-integer original
data type as requested by the application 300.

[5] Ink Data Drawing Process (FIG. 67)

FIG. 67 is a flow diagram illustrating a drawing process
S300-1 executed by the drawing application 300-1 (and
graphic processing section 300 in FIG. 5), which utilizes the
ink data 200 to draw (render) strokes on a screen according
to embodiments of the present invention.

In step S200, the process causes the ink data processing
section 100R to obtain and reproduce InkDataFile to extract
information regarding strokes and points included in each
stroke (e.g., radius and alpha information), as described
above, such that the extracted information can be used as
input data for the drawing process S300-1.

Next, a drawing (rasterization) style object associated
with the stroke object 210 being processed is determined. As
shown in FIG. 48B, the ink data 200 is structured such that
each stroke object 210 (in the stroke model sub-domain) is
associated with one or more drawing style objects (in the
rasterization sub-domain) that define the appearance of the
stroke object 210 when it is drawn (rendered, rasterized,
etc.) on a screen. While there are many types of drawing
style objects, in the illustrated embodiment of FIG. 67, two
options are available: a scattering style object and a shapefill
style object (see FIG. 48).

When the scattering style object is selected, in sub-
process S300-18, first, a vertex (point) array is derived for
each stroke wherein the vertex array consists of a set of
sparsely located discrete points. The process of deriving a
vertex array uses attribute values generated by ink data
processing section 100, such as “spacing” and “range”
values. The process of deriving a vertex array may also use
the context information (INPUT 2) received from an appli-
cation or an operating system. For example, contextual
information about the paper type, which the screen is
supposed to simulate (e.g., Japanese paper, carbon paper,
regular paper, copy paper, photographic paper, ink absorbing
paper, etc.) may be used to increase or decrease the number
of sparsely located discrete points in the vertex array. The
generated vertex array represents a series of particles. In the
illustrated embodiment, the GPU, which is controlling the
drawing process S300-18S, applies a first vertex shader to the
generated vertex array to give a defined size to each of the
particles based on the “radius” value of each point. The GPU
also applies a first fragment shader to the array of particles
to give a defined level of transparency (or opacity) to each
of'the particles based on the “alpha” value of each point. The
drawing process S300-1S thus draws the given stroke in the
style of “scattering” particles (see FIG. 48F).

When the shapefill style object is selected, in sub-process
S300-1F, first, spline segments are derived for each stroke
wherein each spline segment is a sufficiently smooth poly-
nomial function defined for a portion of the continuous
stroke curve. That is, a set of spline segments defines curve
segments, which connect at vertexes to together represent
the stroke. The GPU applies a second vertex shader to the set
of spline segments to give a defined size to each of the
circles centered at the vertexes along the stroke based on the
“radius” value of each vertex (point). The GPU also applies
a second fragment shader to the set of spline segments to
give a defined level of transparency (or opacity) to each of
the circles based on the “alpha” value of each vertex (point).

25

30

40

45

102
The drawing process S300-1F thus draws the given stroke in
the style of “shape filling” (see FIG. 48F).

[6] Effects: Ink Data Drawing Examples (FIGS. 68-72)

FIGS. 68-72 illustrate various drawing rendering
examples, which are used to illustrate the effects of the ink
data generating method, ink data reproducing method, and
ink data drawing (rendering) method, according to embodi-
ments of the present invention. In FIGS. 68-72, “s” indicates
a starting position of a stroke and “e” indicates an ending
position of the stroke. In all cases, it is assumed that the
velocity of pen movement is increasing (accelerating) from
“s” toward “e.”

FIG. 68 illustrates drawing rendering examples resulting
from input of the ink data generated based on the attenuate
(damping) function of FIG. 54, according to embodiments of
the present invention. With the attenuate function, when
velocity increases, radius decreases. Thus, in all of the
drawing examples illustrated in FIG. 68, the width of a
stroke decreases from “s” toward “e.” In these examples,
alpha (transparency) is set as a fixed value.

The rendering examples are in accordance with the obser-
vation described above, that line width that increases due to
pen pressure corresponds to the area into which ink seeps out
in paper [Observation A] and that the faster a pen moves the
shorter time period the pen has to have ink seep out at each
point [Observation B]. Even when a given pen event data
input does not include pressure information, the ink data
processing section according to embodiments of the present
invention is capable of obtaining velocity information for
each point and calculating radius information for each point
based on the velocity information. The generated ink data
thus includes radius information for each of at least some of
the points. When the ink data 200 is rendered (drawn) on a
screen, the radius information may be used to give the drawn
stroke a realistic look and nuanced expressions that closely
simulate the appearance of a real stroke in ink hand-drawn
on paper.

FIG. 69 illustrates drawing rendering examples resulting
from input of the ink data 200 generated based on the power
function of FIG. 56, according to embodiments of the
present invention. With the power function, when velocity
increases, alpha (transparency) increases. Thus, in all of the
drawing examples illustrated in FIG. 69, the stroke becomes
lighter and more transparent (i.e., the darkness decreases)
from “s” toward “e.” In these examples, radius is set as a
fixed value.

The rendering examples are in accordance with the obser-
vation described above, that ink darkness that increases due
to pen pressure corresponds to the area into which ink seeps
out in paper [Observation C] and that the faster a pen moves
the smaller amount of ink seeps out from the pen at each
point (because the pen is in contact at each point for a shorter
time period) [Observation D]. Even when a given pen event
data input does not include pressure information, the ink
data processing section according to embodiments of the
present invention is capable of obtaining velocity informa-
tion for each point and calculating alpha information for
each point based on the velocity information. The generated
ink data 200 thus includes alpha information for each of at
least some of the points. When the ink data 200 is rendered
(drawn) on a screen, the alpha information may be used to
give the drawn stroke a realistic look and nuanced expres-
sions that closely simulate the appearance of a real stroke in
ink hand-drawn on paper.

FIG. 70 illustrates drawing rendering examples resulting
from input of the ink data 200 generated based on both the
attenuate function of FIG. 54 and the power function of FIG.

US 9,448,648 B2

103

56, according to embodiments of the present invention. With
the attenuate function, when velocity increases radius
decreases, while with the power function, when velocity
increases alpha (transparency) increases. Thus, in all of the
drawing examples illustrated in FIG. 70, the width of a
stroke decreases from “s” toward “e” while at the same time
the stroke becomes lighter and more transparent (i.e., the
darkness decreases) from “s” toward “e.” Even when a given
pen event data input does not include pressure information,
the ink data processing section according to embodiments of
the present invention is capable of obtaining velocity infor-
mation for each point and calculating radius and alpha
information for each point based on the velocity informa-
tion. The generated ink data 200 thus includes radius and
alpha information for each of at least some of the points.
When the ink data 200 is rendered (drawn) on a screen, the
radius and alpha information may be used to give the drawn
stroke a realistic look and nuanced expressions that closely
simulate the appearance of a real stroke in ink hand-drawn
on paper.

FIG. 71 illustrates drawing rendering examples, which
show effects of other functions (sigmoid and periodic func-
tions) of FIG. 54 as used in step S1207_07 of FIG. 52, for
special types of pens such as a pen having a particularly soft
pen tip, according to embodiments of the present invention.

The drawing examples on the left-hand side result from
the “SIGMOID” function of FIG. 54, in which attenuation
occurs in steps, as opposed to exponentially as in the
“attenuate” function. Thus, in each of the resulting drawn
(rendered) strokes, the radius (width) of a stroke is decreas-
ing in steps, from a wider portion to a narrower portion, as
opposed to decreasing gradually as in the examples of FIG.
68. In the “SIGMOID (INCR)” function of FIG. 56, increase
occurs in steps, as opposed to the “SIGMOID (DECR)”
function of FIG. 54, in which attenuation occurs in steps.
Thus, the drawing examples resulting from the “SIGMOID
(INCR)” function of FIG. 56 have appearances similar to
those of the drawing examples on the left-hand side of FIG.
71, but with the positions of “s” and “e” switched.

The drawing examples on the right-hand side of FIG. 71
result from the “PERIODIC” function of FIG. 54, in which
the radius output changes (increases and decreases) periodi-
cally. Thus, in each of the resulting drawn (rendered)
strokes, the radius (width) of a stroke changes periodically
from “s” toward “e.”

FIG. 72 illustrates drawing rendering examples, which
show effects of using special values as the radii of the
beginning point(s) and ending point(s) added in step
S1207_04 of FIG. 52, according to embodiments of the
present invention.

Specifically, in step S1207_02 of FIG. 52, a special value
is set as a radius for each of the beginning point(s) and
ending point(s) added to the beginning and ending of the
stroke, respectively.

The left-hand side of FIG. 72 illustrates drawing
examples when the radii of the beginning and ending points
are set as zero (“0). This means that no matter how fast or
slow a user is moving a pen at the beginning or at the end
of a stroke, the radius (width) of the beginning and ending
points of the stroke is essentially ignored in the resulting
drawing.

The right-hand side of FIG. 72 illustrates drawing
examples when the radii of the beginning and ending points
are set larger than (e.g., twice) the normally calculated radii,
ie., the radii that are calculated according to various
embodiments of the present invention using various func-
tions as described above. As shown, this results in the

10

15

20

25

30

35

40

45

50

55

60

65

104

beginning and ending points of each stroke being accentu-
ated, similarly to how, when a user draws a stroke with a pen
on paper, the beginning and ending points of each stroke
often appear accentuated on paper (because the pen is often
paused at the beginning and ending of a pen stroke).

As described above, according to the ink data processing
section, ink data generation method, ink data processing
section, ink data reproduction method and ink data drawing
method of various embodiments of the present invention,
device-independent ink data may be generated and used to
render (draw) strokes having realistic appearances. The ink
data 200 is structured such that it can be shared by various
types of devices and applications, some supporting pressure
data and others not supporting pressure data. The ink data
structure defines radius and/or alpha values for each of the
points forming each stroke, and the radius and/or alpha
values can be used, in place of pressure data, to give realistic
appearances and nuanced expressions to the strokes drawn
on a screen which closely simulate the appearances of actual
strokes in ink hand-drawn on paper.

Though in the above description, pressure is described
mostly as pen pressure applied by a pen, with respect to
devices capable of obtaining (measuring) pressure applied
by a finger, for example, pressure may mean finger pressure.
Thus, in the present description, the term “pen pressure” is
to be understood synonymously as “pressure,” and the term
“pen” is to be understood synonymously as “indicator”
which may include pens (styluses), fingers, and any other
implements, equipment and elements that a user may utilize
to indicate a position on an input device.

Though in the above description, alpha is used to indicate
the degree of transparency (greater alpha means greater
transparency), a parameter that indicates the degree of
opacity may also be used, such that a greater value of the
parameter indicates a greater degree of opacity.

Though the ink data processing section is generally
described as a separate entity from various applications that
request reproduced ink data 200 from the ink data process-
ing section, they may be jointly or integrally formed based
on connections via library links, for example.

Fourth Embodiment

A fourth embodiment of the present invention is directed
to systems and methods that receive pen event data which is
based on a user’s hand drawing motion and receive context
information (INPUT 2) which is provided by an application
or an operating system supporting the hand drawing motion.
The context information (INPUT 2) includes information
about the pen event data, such as the type of pen, author ID,
etc. The systems and methods generate ink data 200 includ-
ing stroke objects 210, metadata objects 250, and drawing
style objects 230, based on the received pen event data and
the received context information (INPUT 2). The systems
and methods may further receive a manipulation information
from the application or operating system supporting the
hand drawing motion and generate a manipulation object,
which forms part of the ink data, based on the received pen
event data, the received context information (INPUT 2), and
the received manipulation information.

Background of the Fourth Embodiment

A framework is desired that will permit digitized hand-
drawn input data, or “ink data,” to be shared among different
operation systems, different applications, different services,
different image formats, different pre-existing standards of
strokes, etc. In short, unification of stroke data models is
desired.

Hyper Text Markup Language (HTML) is one example of
a successful unifying framework. HTML has been widely

US 9,448,648 B2

105

adopted as a common language to mark up (1) “text,” which
is essentially a set number of character code combinations,
with (2) meta tags that mark up how the text should be
characterized or described when displayed. For example,
meta tags indicate font size, color, column, row, group, table,
etc., which are commonly interpreted by different types of
browsers to specify the appearance of text. Such common
language allows for generation of a document that can be
displayed on different devices in different computing envi-
ronments in substantially the same manner (though there
may be some minor variations and differences due to each
browser implementation, for example).

The same is desired for hand-drawn input data. That is, a
common language is desired that defines (1) “strokes™ (or
“traces” or “paths” inputted by a user’s hand drawing
motion), and (2) “objects” that characterize or describe the
“strokes” such as the strokes’ color, texture, offset position,
etc. Such common language (or information model), here-
inafter referred to as the “stroke language (SL),” will allow
generation of a digital document that can be displayed on
different devices in different computing environments in
substantially the same manner (the same appearance),
though there may be some minor variations and differences
due to each rendering engine implementation, for example.

Some data structures configured to represent hand-drawn
strokes in a manner sharable amongst different applications,
such as InkML, ISF and JOT data structures, are known as
described in Documents (D1), (D2) and (DS5) above.

Briefly, InkML (D1) is provided for the purpose of
representing ink inputted with an electronic pen or stylus by
using a markup language that describes the inputted data.
For example, InkML. defines a data structure for a stroke,
wherein the data structure <trace> contains a sequence of
data generated by an input device, where the format of this
data is specified in a separate data structure <traceformat>
using a number of <channel> elements.

ISF (D2) is provided for the purpose of storing ink data in
a binary form intended to be used in mobile devices like
PDA, tablet PC and others that are using a stylus as an input
mechanism. For example, ISF defines a data structure for a
stroke, wherein the data structure TAG_STROKE contains a
sequence of data generated by an input device, where the
format of this data is specified in a separate data structure
TAG_STROKE_DESC_BLOCK wusing various tags like
TAG_NO_X, TAG_BUTTONS and others. ISF involves
compression encoding and is capable of generating static
(persistent) streams using the method of picking the most
suitable compression technique for every data type. For
example, they use combinations of delta encoding and tuned
version of Huffman algorithm for input coordinates, pres-
sure levels and other stylus-generated data, and LL.Z algo-
rithm for custom properties like custom drawing attributes.

JOT (D5) is provided for the purpose of exchanging data
inputted by an electronic pen or stylus between different
machines with various operating systems and architectures.
For example, JOT defines a data structure for a stroke,
wherein the data structure tag INK_POINT describes a
single pen event and its characteristics such as its position,
force (pressure), rotation, etc.

Also, different standards not limited to processing hand-
drawn strokes exist for the purpose of describing vector
graphics in an input-independent manner. SVG 1.1 (D3) is
one such example. Version 1.1 of SVG includes a path
element, which relies on lines and Bezier curves for the
purpose of representing strokes.

10

15

20

25

30

35

40

45

50

55

60

65

106

Summary of the Fourth Embodiment

Embodiments of the present invention may be understood
as addressing one or more of three aspects, in particular
ASPECT THREE.

Systems and methods are provided for generating, con-
verting, and otherwise processing ink data 200 that is
defined by a novel language (or information model), to
achieve one or more aspects of the invention described
above.

Embodiments of the invention are directed to outputting
ink data 200 including stroke objects, which are statically
described by metadata objects and/or dynamically con-
trolled or manipulated by drawing style objects and manipu-
lation objects. The stroke objects, metadata objects, drawing
style objects and manipulation objects collectively form the
ink data 200, which may be stored in a recording format
(e.g., a stroke file format (SFF)) or in a transmission format
(e.g., a stroke message format (SMF)).

The stroke objects according to embodiments of the
present invention may have variable stroke width (i.e., width
that varies along the length of a stroke) and variable stroke
color or transparency (alpha)/opacity (i.e., color or transpar-
ency/opacity that varies along the length of a stroke), as in
the third embodiments described above. The stroke objects
according to embodiments of the present invention may be
defined using suitable interpolation methods such as a
Catmull-Rom spline method, and use special parameters to
describe the beginning and/or ending of any partial stroke,
as in the first embodiments described above.

Embodiments of the invention are directed to a method of
generating ink data 200 which, depending on a connection/
coupling status with a remote host, for example, is capable
of dynamically manipulating remote (remotely located)
stroke objects as well as dynamically manipulating local
stroke objects.

Description of the Fourth Embodiment

FIG. 73, is a diagram illustrating an overall system in
which ink data 200 is utilized, according to embodiments of
the present invention. As compared to the system described
in FIG. 1, the system of FIG. 73 additionally includes a
Server #2 supporting Application Service #2 which is
accessed by Device 10-1-2 and Device 10-1-3. Application
Service #1 and Application Service #2 in FIG. 73 may both
utilize and exchange the ink data 200 via the ink data
exchange infrastructure 10. In FIG. 73, Device 10-1 is a
pen-type input device capable of outputting pen pressure
data, and generates the ink data 200 using Application
300-#1 provided by Application Service #1. Application
300-1 links a TCP/IP library and libraries for ink data
processing section 100 and graphic processing section 300
(not shown in figure) that implements an ink data generation
method of the present invention. The generated ink data 200
may then be outputted in a suitable output form (e.g., in
packets) corresponding to the destination media (e.g., a
network).

Device 10-1-2 is a tablet-type input device capable of
receiving hand-drawn input made by a user’s finger. The
sensor of Device 10-1-2 is not capable of outputting pen
pressure data, but may still generate the ink data 200 using
Application 300-2 provided for Application Service #2.
Application 300-2 links or utilizes libraries like the TCP/IP
stack and libraries for ink data processing section 100 on
Server #2 that implements an ink data generation method of
the present invention. The generated ink data 200 may then
be outputted in a suitable output form (e.g., in packets)
corresponding to the destination media (e.g., a network).

US 9,448,648 B2

107

Device 10-3 is a desktop-type PC that subscribes to
Application Service #2. Device 10-3 may process (e.g.,
render on its display screen or redistribute) the ink data 200
outputted from Device 10-1-1 or Device 10-1-2, using
Application 300-2 provided by Application Service #2.
Application 300-2 dynamically links or utilizes libraries like
the TPC/IP stack and libraries for ink data processing section
100 that implements an ink data reproduction method of the
present invention.

FIG. 74 is a block diagram of an ink data processing
section 100 according to embodiments of the present inven-
tion. The ink data processing section 100 corresponds to the
ink data processing section 100 shown in FIG. 6. The ink
data processing section 100 may be implemented as a library
dynamically or statically linked to an application, such as a
drawing application 300-1 utilizing graphic processing sec-
tion 300 in FIG. 6. The ink data processing section 100
includes an ink data generation section 120 and an ink data
formatting section 140. The ink data generation section 120
generally inputs/includes/receives three types of informa-
tion: 1) PenEvent type input information (“INPUT 17), 2)
Context information (“INPUT 2”), and 3) manipulation
information (“INPUT 3”).

INPUT 1:

“PenEvent type input data,” or simply input data or pen
event data, is inputted from an OS, device driver, API for
obtaining data from an input device such as a pen tablet
sensor. The input data may be from a variety of input
devices, as illustrated on the left hand side of FIG. 92. The
input data is not limited to raw data from an input device,
and may include pen event data generated by processing raw
data, such as InkML and ISF data.

INPUT 2:

Context information indicates context that is used to
support input of the PenEvent type input data described
above. The context information may include, for example,
date and time information regarding a stroke (e.g., when the
stroke is inputted), pen type, pen color, pen 1D, author ID,
the resolution and sampling rate of an input device, etc.,
which are provided by the application (Application 300-1)
or the OS used to generate the stroke.

INPUT 3:

A manipulation information is a command to indicate that
the next stroke to be entered is to form a manipulation object
used to manipulate a pre-existing stroke object 210, instead
of a normal stroke object 210. Such command may be
entered by a user activation of a switch or button associated
with an input device, and is provided to the ink data
generation section 120 from the application 300-1. For
example, when a user wishes to “slice” a pre-existing stroke
object 210, the user issues a manipulation information and
makes a hand-drawing motion to slice the pre-existing
object. In view of the manipulation information, the ink data
generation section 120 uses the user’s slicing motion to slice
the pre-existing stroke instead of drawing another stroke
based on the user’s slicing motion.

The ink data generation section 120 inputs/receives these
three types of information (INPUT 1, INPUT 2 and INPUT
3) and generates a group of objects according to the defi-
nition of the stroke language (SL) as shown in FIG. 48B
described above in reference to the third embodiments.

The ink data formatting section 140 is separate from the
ink data language handling section 120 that generates the ink
data including various objects. In FIG. 74, from below to
above, i.e., in the output direction, a group of objects
generated by the ink data generation section 120 is inputted
to the ink data formatting section 140, which outputs data in

10

15

20

25

30

35

40

45

50

55

60

65

108

a “recording format” or in a “transmission format.” In FIG.
74, from above to below, i.e., in the input direction, data in
a recording format or in a transmission format is inputted to
the ink data formatting section 140, which reproduces a
group of objects and provides the reproduced group of
objects to the ink data generation section 120. In the
following figures, SL. means a stroke language (see FIG.
48B), SFF means a Stroke File Format which is one type of
recording format, and SMF means a Stroke Message Format
which is one type of transmission format.

FIG. 75 is a more detailed functional block diagram ofthe
ink data processing section of FIG. 74, according to various
embodiments of the invention. The ink data processing
section 100 in this figure corresponds to the ink data
processing section 100 shown in FIG. 6

The ink data generation section 120 includes a stroke
object 210 handling section 122, a metadata object handling
section 124, a rendering (drawing style) object handling
section 126 and a manipulation object handling section 128.

The stroke object handling section 122 receives the
PenEvent type input data as input (INPUT 1), and in
reference to the context information (INPUT 2), generates
stroke objects 210 that form the core of the stroke language.

The metadata object handling section 124, based on the
PenEvent type input data (INPUT 1) and the context infor-
mation (INPUT 2), generates a metadata object 250 that
describes the stroke object 210. A metadata object contains
non-drawing related information about the stroke object
210, such as date and time information, author ID and pen
ID, which does not impact the appearance of the stroke
object 210 as drawn on a screen.

The rendering (drawing style) object handling section
126, based on the stroke object generated in the stroke object
handling section 122 and in reference to the context infor-
mation (INPUT 2), generates a drawing style object 230 that
controls rendering (drawing) of the stroke object 210 and
defines how the stroke object 210 appears when rendered on
a screen.

The manipulation object handling section 128, upon
receipt of a manipulation information (“INPUT 3 in FIG.
75), uses the next “stroke” received as INPUT 1 to generate
a manipulation object 270 configured to manipulate the state
of a pre-existing stroke object 210 that may exist locally
(“Local”) or remotely over a network (“Remote”).

Accordingly, the ink data generation section 120 gener-
ates a group of objects based on the stroke language, as
shown in FIG. 48B, based on the three types of input
information (“INPUT 1,” “INPUT 2” and “INPUT 3” in
FIG. 75).

The ink data formatting section 140 includes a recording
format data processing section 142 configured to output a
file in a recording format such as the SFF, InkML and JPEG
formats, and an ink data communication section 144 con-
figured to output a message in a transmission format such as
the SMF format. Data defined by the stroke language
according to definitions of these various formats are output-
ted, such as in an SFF structure description file (schema file)
(F142-1-1), an SVG structure description file (F142-2-1),
and an SMF structure description file (F144-1). Thus, it
becomes possible to generate and reproduce various objects
pursuant to the stroke language, wherein the objects can be
inputted and outputted in a variety of recording formats
and/or transmission formats. While the file ink data format-
ting section 140 as illustrated supports two recording for-
mats, SFF and SVG, it may support more than two recording

US 9,448,648 B2

109

formats, or may support only one recording format when the
application 300-1 does not need to support all possible file
formats.

Output from the manipulation object handling section 128
(e.g., manipulation object 270in FIG. 75) may be arranged
in an SMF message and transmitted over a network to
manipulate (e.g., slice) one or more pre-existing stroke
objects that exist remotely.

<Methods of Generating Language Objects>

FIGS. 76-83B are functional block diagrams and flow-
charts illustrating the structure and operation of the stroke
object handling section 122, the metadata object handling
section 124, the rendering (drawing style) object handling
section 126, and the manipulation object handling section
128, according to embodiments of the present invention.

<SM (Stroke Model): Apparatus/Method for Generating
Stroke Object>

FIG. 76 is a functional block diagram of a stroke object
handling section 122 of FIG. 75. The stroke object handling
section 122 includes a stroke model processing section
(122_1) which inputs pen event data (“INPUT 1), or pen
event type data such as inkML data, and which outputs point
objects. Each point object includes x and y coordinates of
the point and may also include radius and alpha values as
attributes of the point, as described in reference to the third
embodiments above, such that the outputted point object
may be represented as (X, y, radius, alpha). The stroke object
handling section 122 includes a model generating section
(122_2), which receives context information (“INPUT 27)
and prepares a configuration to be outputted to the stroke
model processing section (122_1) for use in generating point
objects. The stroke object handling section 122 further
includes a stroke model builder section (122_3), which
assembles the generated point objects that together form a
stroke into a stroke object 210. The stroke object handling
section 122 thus outputs a plurality of generated stroke
objects.

FIG. 77A is a flowchart illustrating a process of generat-
ing a stroke object 210. In S122_1 the model generating
section 122_2 processes the context information (“INPUT
2”) to extract parameters, such as input rate, used to define
a configuration. In S122_6, the defined configuration is
loaded to the stroke model processing section 122_1 and
used to generate point objects. If the configuration directs
the stroke model processing section 122_1 to apply smooth-
ing, then in S122_2 the stroke model processing section
122_1 applies smoothing to the array of points to generate
smoothed point objects. For example, a double exponential
smoothing algorithm may be used, which may be configured
with a suitable window size, smoothing data factor, and
trend smoothing factor. If the configuration directs that no
smoothing is to be applied, S122_2 is skipped. If the
configuration directs the stroke model processing section
122_1 to generate additional points, then in S122_3 the
stroke model processing section 122_1 generates additional
points and appends them to the beginning and/or the ending
of a stroke. The steps like S_122 2 and S_122_3 are
executed before S122_7 depending on the context informa-
tion processed in the model generating section 122_2. As
another example, position values of the point objects that
form a stroke object 210 may depend on the interpolation
method (e.g., a Catmull-Rom spline method) specified in the
configuration loaded in S122_6. In step S122_7 the stroke
model building section 122_3 assembles the generated point
objects to form a new stroke object 210 or update a pre-
existing stroke object 210.

10

15

20

25

30

35

40

45

50

55

60

65

110

FIG. 77B describes a detailed algorithm of S122_3 of
FIG. 77A, wherein additional points are generated and
appended to the beginning and/or the ending of a stroke. As
shown, depending on the phase of the point being processed,
a different algorithm can be executed. Phase of a point
indicates a position of the point relative to a stroke to which
the point belongs. For example, if the phase is “begin”
indicating that the point is a beginning point of a stroke
“end” is analogous, indicating an ending point of a stroke),
then in S122_4 (S122_5 for “end” phase) one or more (e.g.,
3) points are generated and appended to form the beginning
(ending) of the stroke. Similar to S122_7 in FIG. 77A,
position values of the point objects generated and added in
S122_4 (S122_5) may depend on the interpolation method
(e.g., a Catmull-Rom spline method) specified in the con-
figuration loaded in S122_6. If the phase is “middle,”
indicating that the point is in the middle section of a stroke,
then no additional points are generated for that point.

<MD (MetaData): Apparatus/Method for Generating
Metadata Object>

FIG. 78 is a functional block diagram of a metadata object
handling section 124 of FIG. 75. The metadata object
handling section 124 includes a metadata generating section
124-1, which receives context information (“INPUT 2”) and
extracts metadata therefrom such as author ID, location, etc.
At least some of such metadata is arranged into a configu-
ration and sent to a metadata processing section 124_2,
which processes a stroke object 210 received from the stroke
object handling section 122 pursuant to the configuration. A
metadata object 250 is to be generated to describe the
received stroke object 210. The metadata processing section
124_2 extracts metadata, such as time information, from the
received stroke object 210 and sends the extracted metadata
to a metadata building section 124_3. The metadata gener-
ating section 124_1 also sends static configuration(s)
extracted from the context information to the metadata
building section 124_3. Typically, a static configuration is
common for an entire drawing. The metadata building
section 124_3 builds a metadata object 250 based on the
metadata received from the metadata generating section
124_1 and the metadata processing section 124_2.

FIG. 79 is a flowchart illustrating a process of generating
a metadata object 250. In S124_1 the metadata generating
section 124_1 and the metadata processing section 124_2
extract metadata from their respective input, such as pen ID,
timestamp, etc. In S124_2, the extracted metadata as appli-
cation context information is loaded to the metadata building
section 124_3. In S124_3, the phase of the point being
processed is determined. If the point is a beginning point of
a stroke object 210, then a metadata object 250 is generated
and associated with the point. Since typically only one
metadata object 250 is needed per stroke object 210, a
metadata object 250 need not be generated and associated
with the rest of the points other than the beginning point.

<R (Rasterization): Apparatus/Method for Generating
Rendering (Drawing Style) Object>

FIG. 80 is a functional block diagram of a rendering
(drawing style) object handling section 126 of FIG. 75. The
rendering object handling section 126 includes a style gen-
erating section 126_1, which receives context information
(“INPUT 2”) and extracts information such as min/max
radius information, min/max velocity information, min/max
pressure information, color information, etc. At least some
of such information is arranged into a configuration and sent
to a style processing section 126_2, which processes a stroke
object 210 received from the stroke object handling section
122 pursuant to the configuration. A drawing style object

US 9,448,648 B2

111

230 is to be generated to define how to draw (render) the
received stroke object 210. The style processing section
126_2 extracts style related parameters, such as (variable)
radius, (variable) color, (variable) alpha (transparency) and
anti-aliasing parameters, from the received stroke object 210
and the configuration and sends the extracted information to
a style building section 126_3. The style generating section
126_1 also sends static configuration(s) extracted from the
context information to the style building section 126_3.
Typically, a static configuration is common for an entire
drawing. For example, if all strokes in a drawing have the
same composition blending mode, the mode value is a static
configuration.

FIG. 81 is a flowchart illustrating a process of generating
a style object. In step S126_1, the style processing section
126_2 determines input characteristics, such as pressure
data, timestamp data, position data, etc. based on the stroke
object 210 and the context information available from the
application. In S126_2a suitable configuration is loaded
depending on the characteristics determined in step S126_1.
For example, if a selected tool in the application is a
ballpoint pen and the input characteristics contain pressure
data, then a configuration for a pressure-based ballpoint pen
is loaded. As another example, if a selected tool is a ballpoint
pen and the input characteristics do not contain pressure data
but include a timestamp, then a configuration for a velocity-
based ballpoint pen is loaded (because velocity can be
derived from timestamp information). In step S126_3 the
loaded configuration is examined to determine whether
width (or color) is variable or not. Then in step S126_4 it is
determined whether width (or color) is variable per point,
meaning that a stroke can have width or color that varies
along its length. If “yes,” then in S126_5a cascading style
property radius (and/or color) is generated per each point
object. Otherwise in S126_6 a cascading style property is
generated for the stroke object 210.

Another example for optional cascading property is a
build up property. Build up property is used to simulate an
extra ink spillage when the input device is in both static
position and down state. A real world analogy for this
property is the behavior of a watercolor brush on a soft
paper. When the watercolor brush is in a static position, the
soft paper soaks in paint and therefore the contact point
becomes darker and bigger. In step S126_7 a build up
property is generated for each point object if the inputted
stroke object 210 satisfies the build up conditions specified
by the configuration loaded in S126_2. For example if a user
does not produce any movement in the down state and a
build up algorithm is activated in the loaded configuration,
then in step S126_7 the current (last-generated) point is
duplicated or updated, to increase the points density in this
particular position.

Other steps similar to the previously described steps may
be executed before S126_8 depending on the loaded con-
figuration in S126_2. In step S126_8, a style object is
generated. All of the cascading style properties updated in
steps S126_5, S126_6 and S126_7 and others are assembled
into a style object in S126_8.

<M (Manipulation): Apparatus/Method for Generating
Manipulation Object>

FIG. 82 is a functional block diagram of a manipulation
object handling section 128 of FIG. 75. The manipulation
object handling section 128 includes a manipulator genera-
tion section 128_1, which receives and processes context
information (“INPUT 2”) to prepare a configuration for use
by a manipulation processor 128_2. The manipulation pro-
cessor section 128_2 processes pen event data (“INPUT 1)

5

10

20

25

30

35

40

45

50

55

60

65

112

in reference to the configuration received from the manipu-
lator generation section 128_1 and also in reference to a
manipulation information (“INPUT 3”) received from the
application, to thereby generate a manipulation entity, such
as a slice entity. A manipulation builder 128_3 receives the
manipulation entity, such as the slice entity, and builds a
manipulation object, such as a slice object 274. A manipu-
lation object is configured to execute a defined operation on
a pre-existing stroke object 210. For example, a slice object
274 is used to slice a pre-existing stroke object 210 into two
slice pieces. A collection of manipulation (e.g., slice) objects
generated by the manipulation builder 128_3 may be sent
over a network to be executed on pre-existing stroke
object(s) that exist remotely, or may be executed locally on
pre-existing stroke object(s) generated and stored in the
stroke object handling section 122. As illustrated, the
manipulation processor 128 2 may also receive stroke
object(s) from the stroke object handling section 122, based
on which to generate manipulation entities.

FIG. 83A is a flowchart illustrating a process of generat-
ing a manipulation object. In step S128_1 input character-
istics, such as pressure, position, and timestamp information,
are extracted from INPUT 1 and INPUT, and also a manipu-
lation information (INPUT 3) is received. In step S128_2, a
suitable configuration is loaded, wherein the configuration is
determined from the extracted input characteristics and
application context information (“INPUT 2”). In step
S128_3, new input is processed according to the loaded
configuration and to form a manipulation object. For
example, if the new input is a polygon shape, the polygon
shape defines a manipulation region. For example, if a
manipulation object to be generated is a lasso tool, the
polygon shape defines the scope of the lasso tool. In S128_4
one pre-existing stroke object 210 is selected out of plural
pre-existing stroke objects, and in S128_5, any intersections
between the selected pre-existing stroke object 210 and the
manipulation region (e.g., the polygon shape) are calculated.
If no intersections are found in S128-7, another pre-existing
stroke object 210 is selected and steps S128 4, S128_5 and
S128_6 are repeated until at least one intersection with one
pre-existing stroke is found. When an intersection between
a pre-existing stroke object 210 and the manipulation region
is found, in S128-7, a slicing manipulation object is gener-
ated, which is configured to “slice” the pre-existing stroke
object 210 at the intersection. In S128_14 it is determined if
there are more pre-existing stroke objects with which the
manipulation region may intersect. If “yes,” the process
returns to step S128 4. If all of the pre-existing stroke
objects are checked for their intersections with the manipu-
lation region, in S128_15 the generated slice object(s) are
assembled into a collection of slice object(s).

FIG. 83B is a flow chart illustrating a process of gener-
ating a slice object. In S128_8 the configuration loaded in
S128_2 is used to determine “manipulation accuracy.” If the
manipulation accuracy is “whole stroke,” then in S128_9 a
slice object 274 is generated, which slices a pre-existing
stroke object 210 to generate two slice pieces wherein each
of the pieces is defined by a sub-set of the original point
objects forming the pre-existing stroke object 210. In other
words, even when the intersection with the manipulation
region lies between two adjacent point objects of the pre-
existing stroke object 210, the exact location of the inter-
section is not used to define the two slice pieces.

If the manipulation accuracy is “exact point,” in S128_10,
the intersected (curve) segment between two adjacent point
objects is found, wherein the intersected segment is where
the manipulation region intersects the pre-existing stroke

US 9,448,648 B2

113

object 210. One or more intersected segments are found. In
S128_11 each of the intersected segments is processed to
find the exact location of the intersection using an interpo-
lation method, for example. In S128_12, for each intersected
segment, two slice pieces are generated, each having the
exact location of the intersection as an ending position or a
starting position. In S128_13 the generated slice pieces are
updated to respectively become new stroke objects, and each
of the newly created stroke objects is associated with a
metadata object 250 and a drawing style object 230.

As described above, the ink data processing section 100
and its associated method generate stroke objects as well as
objects associated with the stroke objects 210, including
metadata objects 250, rasterization drawing style objects
230, and manipulation objects 270.

Configuration and operation of the ink data formatting
section 140 are now described in detail in reference to FIGS.
84-90C.

FIG. 84 is a functional block diagram of the ink data
formatting section 140 of FIG. 75. As described above in
reference to FIG. 75, the ink data formatting section 140
includes a recording format data processing section 142 that
outputs a file in a recording format such as the SFF, InkML
and JPEG formats, and an ink data communication section
144 that outputs various objects (stroke objects 210, meta-
data objects 250, drawing style objects 230 and manipula-
tion objects 270) in a transmission format. Thus, it is
possible to generate and reproduce various objects pursuant
to the stroke language, which can be inputted and outputted
in a variety of recording formats and/or transmission for-
mats.

The recording format data processing section 142 is
configured to arrange stroke objects, metadata objects and
drawing style objects in a recording format. Sub-sections
142-1, 142-2, et seq. are processing sections configured to
arrange objects pursuant to respective output file formats.

The ink data communication section 144 arranges
manipulation objects, such as slice objects 274, in a stroke
message format suitable for (real time) transmission over a
network to a remote device. A manipulation object arranged
in a transmission format can be executed on any pre-existing
stroke objects that exist locally or that may exist remotely
over a network.

FIG. 85 is a flowchart illustrating a process performed in
the ink data formatting section 140. First, it is determined
whether an object needs to be transmitted. The determina-
tion may be made based on whether a stroke object 210,
which is locally structured at the present time, is shared with
any remote terminal. If yes, in step S144, the object is
arranged in a Stroke Message Format (SMF) to be trans-
mitted over a network. If, on the other hand, it is determined
that the object is not to be transmitted, the object is arranged
in a suitable recording format selected from a plurality of
recording formats. If a Stroke File Format (SFF) is to be
used as an output format, in step S142-1 an SFF generation
process is performed. If other formats such as the SVG and
JPEG formats are to be used, in step S142-2, for example,
an SVG generation process is performed to output an SVG
format file that includes the stroke language information
based on expansion of SVG.

FIG. 86 is a flowchart illustrating a process of outputting
a stroke file format (SFF) data. In S142-1-1, an SFF structure
description file (F142-1-1) is parsed to generate an SFF
structure. The SFF structure is described using an interface
description language. Each software application that uses
SFF needs to understand (parse) the description file in order
to properly work with SFF data. For example, if the SFF

10

15

20

25

30

35

40

45

50

55

60

65

114

structure is expressed using the Protocol Buffers IDL then
stub classes generated by a Protocol Buffers compiler are
loaded in S142-1-1. In S142-1-2, the SFF structure is filled
in with various objects generated in the ink data generation
section 120 of FIG. 75. In S142-1-3 the SFF structure is
processed using various techniques for optimal memory
representation of abstract data types, such as a variable
integer encoding technique and an exponential-Golomb
code technique. In S142-1-4, the generated memory repre-
sentation of the SFF structure is packed into a memory
stream. The generated memory stream may be saved in a file
system or a file structure.

S142-1-2 may include multiple steps for appropriately
filling the SFF data structure. For each stroke object 210
included in the ink data being processed (S142-1-5) and for
each point object included in the stroke object 210 being
processed (S142-1-6), it is determined whether a compres-
sion operation is to be performed. If “yes,” in S142-1-7 all
floating-point values are converted to fixed-point precision
values and represented as integers. Any loss of precision can
be compensated for in the stroke object handling section 122
or in the rendering object handling section 126 by rounding
point object floating-point values to the desired precision. In
S142-1-8 a compression algorithm, such as delta encoding,
is applied to the generated integer values. In S142-1-9, the
objects that have undergone the compression process, if
compression is applied, are used to fill the SFF structure.

FIG. 87 is a flowchart illustrating a process of outputting
JPEG format data. For each stroke object 210 included in the
ink data being processed (S142-2-1), in S142-2-2 all draw-
ing style objects that are linked with the stroke object 210
are retrieved and all rasterization (drawing) properties
defined in the drawing style objects are loaded (e.g., mixing
and texture properties). At this time all cascading values,
such as color and radius values, are resolved. In S142-2-3
geometry of the stroke is generated using a CPU or GPU. In
S142-2-3 the stroke is rasterized (drawn) by applying all
rasterization/graphical information on the generated geom-
etry, such as color, texture, etc., using a CPU or GPU. In
S142-2-5 all rasterized strokes are composed together. In
S142-2-6 a bitmap is generated that contains all of the stroke
objects as rendered (drawn, rasterized). In S142-2-7 the
bitmap data is compressed using a JPEG algorithm.

FIG. 88 is a flowchart illustrating a process of outputting
a stroke messaging format (SMF) data. In S144-1 an object
is received from one of the object handling sections 122,
124, 126 or 128 of FIG. 75. In S144-2 the object type is
determined as a stroke object 210, a metadata object 250, a
drawing style object 230, or a manipulation object. In
S144-3 an identifier (e.g., a stroke ID, a style ID) is assigned
to the object to indicate a connection between the object and
the rest of the objects in the ink data 200 being processed.
In S144-4 an SMF structure description file (F144-4) is
parsed and the SMF structure corresponding to the deter-
mined object type is loaded. For example, if the SMF
structure is expressed using the Protocol Buffers IDL, then
stub class generated by a Protocol Buffers compiler are
loaded. In S144-5, it is determined whether a compression
operation is to be performed on the determined object. If
“yes,” in S144-6 all floating-point values (e.g., X, v, radius,
opacity, transparency) are converted to fixed-point precision
values and represented as integers. In S144-7 a compression
algorithm, such as delta encoding, is applied to the generated
integer values. In S144-8, the objects that have undergone
the compression process, if compression is applied, are used
to fill the SMF structure. In S144-9 the SMF data is saved
into a memory stream.

US 9,448,648 B2

115

FIG. 89 is a functional block diagram that explains input
processing of data (SFF/JPEG and SMF) that have been
outputted in various file formats and transmission formats.

In FIG. 89, an ink data output handling section 140T
illustrated on the left hand side performs the output process-
ing described above. The ink data 200 is outputted in a
recording format such as the SFF format and the JPEG
format, or in a transmission format such as the SMF format.

These files and/or messages outputted in various formats
may then be inputted (received) by an ink data input
handling section 140R illustrated on the right hand side of
FIG. 89. In various embodiments, the ink data input pro-
cessing and the ink data output processing are carried out in
the same processing section(s) that share the same libraries,
such as in the same sub-section 142-1 (both IN and OUT)
and sub-section 142-2 (both IN and OUT).

The recording format data processing section 142 in the
ink data input handling section 140R removes format-
dependent data from the inputted data, extracts information
regarding the ink data objects of various types, and outputs
the extracted information regarding the ink data objects to
the ink data generation section 120 on the receiving side.

The ink data communication section 144R in the ink data
input handling section 140R extracts manipulation objects
from the received packets or messages, and directs each
extracted manipulation operation to be executed (applied) to
pre-existing stroke objects in the ink data generation section
120 on the receiving side.

FIG. 90A is a flowchart of a process to interpret and
reproduce an object arranged in an SFF file. In S142-1(IN)-
1, an SFF structure description file is parsed to generate an
SFF structure. In S142-1(IN)-2 the SFF structure is
unpacked. One or more SFF structures are unpacked, and for
each of the unpacked SFF structures (S142-1(IN)-3), it is
determined whether the unpacked SFF structure is com-
pressed. If “yes,” in S142-1(IN)-4, the unpacked SFF struc-
ture is decompressed, and in S142-1(IN)-5, decompressed
fixed-point values represented as integers are converted back
to floating-point representation. In S142-1(IN)-6, a corre-
sponding Strokes Language object is created (e.g., a stroke
object 210, drawing style object 230, metadata object 250).

FIG. 90B is a flowchart of a process to interpret and
reproduce an object based on input in InkML. In S142-2
(IN)-1, an InkML file is parsed and loaded in memory. In
S142-2(IN)-2 trace objects are converted to pointer input
event samples. This process involves extracting input data,
such as position, pressure, angle, tilt and timestamp data,
and modeling the extracted input data into a pointer input
event sequence. In step S142-2(IN)-3 the pointer input event
sequence is passed to the stroke object handling section 122,
which also receives context information based on the data
contained in the InkML file (e.g., if there is a pressure
channel or not). The stroke object handling section 122
generates stroke objects. In step S142-2(IN)-5, the metadata
object handling section 124 generates metadata objects. In
step S142-2(IN)-4, the rasterization (drawing style) object
handling section 126 generates drawing style objects.

FIG. 90C is a flowchart illustrating a process of receiving
and executing a manipulation (slice) object in SMF. In
S144-1 a collection of slice objects 274 in SMF are received.
In S144-2 slice objects 274 are unpacked. In S144-3 pre-
existing stroke objects are traversed to locate the stroke
objects affected by the slice objects 274 unpacked in S144-2.
In S144-4 the affected stroke objects are traversed. In
S144-5 every affected stroke object 210 is modified (sliced)
using the corresponding slice object. All point objects within
the point range specified in the corresponding slice object

10

15

20

25

30

35

40

45

50

55

60

65

116

are removed (erased). In S144-6 one or two new stroke
objects are created, if desired. For example, if the removed
point objects are in the middle of a stroke object 210 that is
sliced, then the beginning portion of the original stroke
object 210 may form a new stroke object 210 and the ending
portion of the original stroke object 210 may form another
new stroke object 210. In S144-8 the slice object is exam-
ined to determine whether the style properties of the affected
stroke should be modified or not. If the style properties
should be modified, S144-9 sets new style property values
for the newly created stroke object(s). Otherwise S144-7
simply copies the style property values of the original stroke
object 210 onto the newly created stroke object(s). The same
process is applied for metadata. If the metadata should be
modified, then S144-11 applies new metadata to the newly
generated stroke objects. Otherwise S144-10 simply copies
the metadata of the original stroke object 210 onto the newly
created stroke object(s). In S144-12 the values of startPa-
rameter 301 and endParameter 303 of the original stroke
object 210 may be copied onto the newly created stroke
object(s). The process described above is repeated for all of
the affected stroke objects. In S144-13 a check is performed
to determine whether there is a need to redraw the current
screen. If “yes,” in S144-14 the stroke objects in a modified
region that have been sliced by one or more of the slice
objects 274 are drawn (rendered) on the screen.

Effects of Embodiments 1-4

FIG. 91 is a diagram explaining the effect of using an ink

data 200 processing device (101) of FIG. 75 to address
ASPECT ONE described above. Manipulation objects
according to various embodiments of the present invention
permit transmission of manipulation operation contents
using a transmission format, to thereby readily synchronize
the states of the stroke objects situated at multiple locations.
For example, assume that one device on the left hand side
and two devices on the right hand side of FIG. 91 (respec-
tively corresponding to Devices 10-1-1, 10-1-2, 10-1-3 in
FIG. 1 and FIG. 73) are executing a real-time collaboration
application. Assume further that the devices are sharing a
stroke object 210 to be processed, which has not been sliced
yet. Then, the following operation is possible according to
embodiments of the present invention.

1. First, the device on the left hand side performs a slice
manipulation operation on the stroke object 210 having
a defined stroke width WIDTH.

2. Next, the ink data 200 processing device 101 (the
manipulation object handling section 128) generates a
manipulation object based on the slice manipulation
operation.

3. Next, the ink data processing device 101 modifies its
local stroke object 210 by performing the slice manipu-
lation operation on the local stroke object 210 (see
“Local” arrow in FIG. 75). This process may be per-
formed prior to or in parallel with step 2 above.

4. Next, the ink data processing device 101 (the ink data
communication section 144) formats the manipulation
object in an SMF data and transmits the SMF data to a
network (see “Remote” arrow in FIG. 75).

5. Devices 10-1-2 and 10-3 that receive the manipulation
object in the SMF data extract the stroke IDs associated
with the manipulation object, and perform the manipu-
lation operation (slice operation) on each of the stroke
objects identified by the extracted stroke IDs. As a
result, the (sliced) states of the stroke objects identified
by the extracted stroke IDs are synchronized among
Device #1 on the left hand side and Devices 10-1-2 and
10-3 on the right hand side.

US 9,448,648 B2

117

Therefore, the ink data processing method according to
embodiments of the present invention is capable of manipu-
lating stroke data dynamically, both locally and remotely
across a network between two remotely located devices, in
real time or at different times.

FIG. 92 is a diagram explaining the effect of using an ink
data processing device (101) of FIG. 75 to address ASPECT
TWO described above.

The left hand side of FIG. 92 shows device-dependent raw
data on the input side, and the right hand side of FIG. 92
shows data to be included in output files as final products.
The left hand side shows four types of input data that can be
used to generate strokes, as follows:

1. A sequence of point coordinates obtained by Type 1
device, i.e., a simpler device such as a device incorpo-
rating a capacitive type touch sensor.

2. A sequence of point coordinates as well as a sequence
of pen pressure information obtained by Type 2 device
capable of obtaining pen pressure information.

3. Type N data including various details such as pen
rotation angles, pen pressure, X-direction pen tilt angle,
Y-direction pen tilt angle, etc., as obtainable by a
combination of professional-grade hardware and an
application used to generate computer graphics, for
example.

4. Standardized data, such as InkML, which may repre-
sent azimuth, elevation, and pen orientation informa-
tion.

As described above in reference to ASPECT TWO, in
general, the information that needs to be reproduced based
on hand-drawn input data is not “how” the hand-drawn data
was inputted, such as at what angle a pen (stylus) was held
and how much pen pressure was applied, etc. Rather, the
information that needs to be reproduced is the “result” of
such pen operation, which includes one or more strokes that
were generated by the pen operation. Thus, it is desirable to
use a stroke model that makes the hand-drawn input data as
abstract and generalized as possible, i.e., that processes the
hand-drawn input data to the right-hand side of FIG. 92 as
much as possible. Such stroke model can then absorb
differences that may exist among different devices, which
record the “how” in various specific (non-abstract) manners.

The far right-hand side of FIG. 92 shows the data struc-
ture or file format included in image files as final products
of the ink data processing according to embodiments of the
present invention. The middle portion of FIG. 92 shows
intermediate vector data, which may result from the ink data
200 processing according to embodiments of the present
invention, suitable for use in various applications such as
textizing, signature verification, annotation and real-time
collaboration applications. The intermediate vector data
includes the pre-existing SVG data (D3) that defines vector
graphics in an input-independent manner, i.e., in a manner
not oriented to pen-input. As such, SVG does not readily
permit varying or adjusting pen-oriented data such as stroke
width, stroke color, and stroke transparency and, as a result,
is not particularly suited for marking up (characterizing)
stroke data. On the other hand, the Stroke Language (SL)
based intermediate vector data according to embodiments of
the present invention provides various objects, such as
metadata objects, rendering objects and manipulation
objects, which are configured to mark up, characterize, or
operate on stroke objects derived from the raw input data.

FIG. 93 is a diagram explaining the effect of using an ink
data processing device (101) of FIG. 75 to address ASPECT
THREE described above. The provision of the common
stroke language (or the common information model that

10

15

20

25

30

35

40

45

50

55

60

65

118

defines the language semantics and syntax), which is not tied
to a specific format but may be used with a variety of
formats, permits extending the life cycle of an ink data
ecosystem. In FIG. 93, 100-1, 100-2 . . . 100-N represent
different applications in which the ink data processing
method according to embodiments of the present invention
is embedded. When raw “input data” is inputted to the
application 100-1 (“STEP1” in FIG. 93), the ink data
generation section 120 of the application 100-1 abstracts the
raw input data into objects in the stroke language (or the
information model defining the stroke language). The
objects are then converted to a recording format or a
transmission format (“first format,” or SVG in the illustrated
example) and outputted (“STEP2” in FIG. 93). The appli-
cation 100-2 receives and interprets the data in SVG to
extract the objects in the stroke language for rendering or
manipulation. The application 100-2 may format the objects
in another recording format or a transmission format (“sec-
ond format,” or SFF in “STEP3-2” of FIG. 93). The data in
SFF is then outputted to be received by an application
100-N, which interprets the data in SFF to extract the objects
in the stroke language for rendering or manipulation. The
application 100-N may format the objects in yet another
recording format or a transmission format (“third format,” or
Bitmap) to be outputted. Thus, as compared to the JOT in
(DS) for example which processes an ink data structure
using a single format, embodiments of the present invention
are capable of processing the ink data in a variety of formats,
thereby extending the life cycle of the ink data 200. In the
illustrated example of FIG. 93, the ink data 200 is usable by
the application 100-1, by the application 100-2, and by
further applications including the last application 100-N.

It should be appreciated by those skilled in the art that
each of the elements, devices, steps and processes described
above may be combined with other elements, devices, steps
and processes, or may be further divided into sub-elements,
sub-devices, sub-steps and sub-processes, depending on
each implementation and application. Still further, the steps
and processes may be executed in a single processor, or may
be distributedly executed in multiple processors, depending
on each implementation and application.

The invention claimed is:
1. A method of generating ink data in a device including
a processor which is coupled to memory and to a position
input sensor, the ink data including stroke objects that are
vector data configured to reproduce paths formed by oper-
ating a pointer, the method comprising:
sequentially receiving, in the processor, pen event data
detected by the input sensor, the pen event data being
indicative of pen down, pen movement, and pen up
events;
sequentially generating, in the processor, point objects
based on coordinate values included in the received pen
event data, wherein the point objects serve as control
points for interpolating curve segments according to a
defined curve interpolation algorithm to form a stroke
object;
generating, in the processor, a start parameter indicative
of a start point within a starting curve segment of the
curve segments at which display of the stroke object
starts and an end parameter indicative of an end point
within an ending curve segment of the curve segments
at which display of the stroke object ends, wherein the
start point indicates an internal division point between
two end points of the starting curve segment where the
display starts and the end point indicates an internal

US 9,448,648 B2

119

division point between two end points of the ending
curve segment where the display ends; and

outputting, from the processor, the start parameter and the
end parameter as well as the point objects as part of the
stroke object in a defined format.

2. The method of claim 1, wherein the defined curve
interpolation algorithm is a local-control algorithm in which
a value of i-th point object impacts a limited number of
curve segments adjacent to the i-th point object.

3. The method of claim 2, wherein the defined curve
interpolation algorithm is a Catmull-Rom Curve algorithm.

4. The method of claim 1, further comprising:

generating, in the processor, a point object to serve as an

additional control point on an initial point object of the
stroke object to form the starting curve segment by
duplicating a value of the initial point object.

5. The method of claim 1, further comprising:

determining, in the processor, whether smoothing is to be

applied; and

if it is determined that the smoothing is to be applied,

generating, in the processor, one or more point objects
to serve as additional control points on a last point
object of the stroke object to form the end curve
segment by duplicating a value of the last point object
to fill a lag between a smoothed coordinate of the last
point object and an original coordinate of the last point
object.

6. The method of claim 1, wherein the defined curve
interpolation algorithm is a Catmull-Rom Curve algorithm,
and the method further comprises one or both of:

duplicating a value of an initial point object to create a

starting control point to fix a shape of curve of the
starting curve segment; and

duplicating a value of a last point object to create an

ending control point to fix a shape of curve of the
ending curve segment.

7. A non-transitory computer readable medium including
processor-executable instructions which, when loaded onto
a processor, causes the processor to execute a process of
generating ink data including stroke objects that are vector
data configured to reproduce paths formed by operating a
pointer on an input sensor, the process comprising:

sequentially receiving, in the processor, pen event data

detected by the input sensor, the pen event data being
indicative of pen down, pen movement, and pen up
events;

sequentially generating, in the processor, point objects

based on coordinate values included in the received pen
event data, wherein the point objects serve as control
points for interpolating curve segments according to a
defined curve interpolation algorithm to form a stroke
object;

30

35

40

45

50

120

generating, in the processor, a start parameter indicative
of a start point within a starting curve segment of the
curve segments at which display of the stroke object
starts and an end parameter indicative of an end point
within an ending curve segment of the curve segments
at which display of the stroke object ends, wherein the
start point indicates an internal division point between
two end points of the starting curve segment where the
display starts and the end point indicates an internal
division point between two end points of the ending
curve segment where the display ends; and

outputting, from the processor, the start parameter and the
end parameter as well as the point objects as part of the
stroke object in a defined format.

8. The computer readable medium of claim 7, wherein the
defined curve interpolation algorithm is a local-control algo-
rithm in which a value of i-th point object impacts a limited
number of curve segments adjacent to the i-th point object.

9. The computer readable medium of claim 8, wherein the
defined curve interpolation algorithm is a Catmull-Rom
Curve algorithm.

10. The computer readable medium of claim 7, wherein
the process further comprises:

generating, in the processor, a point object to serve as an

additional control point on an initial point object of the
stroke object to form the starting curve segment by
duplicating a value of the initial point object.

11. The computer readable medium of claim 7, wherein
the process further comprises:

determining, in the processor, whether smoothing is to be

applied; and

if it is determined that the smoothing is to be applied,

generating, in the processor, one or more point objects
to serve as additional control points on a last point
object of the stroke object to form the end curve
segment by duplicating a value of the last point object
to fill a lag between a smoothed coordinate of the last
point object and an original coordinate of the last point
object.

12. The computer readable medium of claim 7, wherein
the defined curve interpolation algorithm is a Catmull-Rom
Curve algorithm, and the process further comprises one or
both of:

duplicating a value of an initial point object to create a

starting control point to fix a shape of curve of the
starting curve segment; and

duplicating a value of a last point object to create an

ending control point to fix a shape of curve of the
ending curve segment.

#* #* #* #* #*

